531
Views
7
CrossRef citations to date
0
Altmetric
Research Article

A Jaya-based approach to wind turbine placement problem

ORCID Icon, & ORCID Icon
Pages 3318-3337 | Received 05 Apr 2020, Accepted 29 Jul 2020, Published online: 21 Sep 2020

References

  • An, X.-Y., Z. Yan, and J.-M. Jia. 2020. A new distribution for modeling wind speed characteristics and evaluating wind power potential in Xinjiang, China. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects 1–19. doi:10.1080/15567036.2020.1758250.
  • Aslan, M., M. Gunduz, and M. S. Kiran. 2019. JayaX: Jaya algorithm with xor operator for binary optimization. Applied Soft Computing 82:105576. doi:10.1016/j.asoc.2019.105576.
  • Baş, E., and E. Ülker. 2020. A binary social spider algorithm for continuous optimization task. Soft Computing 1–27. doi:10.1007/s00500-020-04718-w.
  • Beşkirli, M., İ. Koç, H. Haklı, and H. Kodaz. 2018. A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm. Renewable Energy 121:301–08. doi:10.1016/j.renene.2017.12.087.
  • Beşkirli, M., I. Koc, and H. Kodaz. 2019. Optimal placement of wind turbines using novel binary invasive weed optimization. Tehnicki Vjesnik 26:56–63. doi:10.17559/TV-20170725231351.
  • Bilgen, S., K. Kaygusuz, and A. Sari. 2004. Renewable energy for a clean and sustainable future. Energy Sources 26:1119–29. doi:10.1080/00908310490441421.
  • Changshui, Z., H. Guangdong, and W. Jun. 2011. A fast algorithm based on the submodular property for optimization of wind turbine positioning. Renewable Energy 36:2951–58. doi:10.1016/j.renene.2011.03.045.
  • Chen, Y., W. Xie, and X. Zou. 2015. A binary differential evolution algorithm learning from explored solutions. Neurocomputing 149:1038–47. doi:10.1016/j.neucom.2014.07.030.
  • Crespo, A., and J. Herna. 1996. Turbulence characteristics in wind-turbine wakes. Journal of Wind Engineering and Industrial Aerodynamics 61:71–85. doi:10.1016/0167-6105(95)00033-X.
  • Derrac, J., S. García, D. Molina, and F. Herrera. 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1:3–18. doi:10.1016/j.swevo.2011.02.002.
  • Dincer, I. 2001. Environmental issues: Ii-potential solutions. Energy Sources 23:83–92. doi:10.1080/00908310151092218.
  • Emami, A., and P. Noghreh. 2010. New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renewable Energy 35:1559–64. doi:10.1016/j.renene.2009.11.026.
  • Gao, X., H. Yang, L. Lin, and P. Koo. 2015. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. Journal of Wind Engineering and Industrial Aerodynamics 139:89–99. doi:10.1016/j.jweia.2015.01.018.
  • Geem, Z. W. 2005. Harmony search in water pump switching problem. International Conference on Natural Computation, 751–60. Springer. doi:10.1007/11539902_92
  • González, J. S., A. G. G. Rodriguez, J. C. Mora, J. R. Santos, and M. B. Payan. 2010. Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy 35:1671–81. doi:10.1016/j.renene.2010.01.010.
  • Grady, S., M. Hussaini, and M. M. Abdullah. 2005. Placement of wind turbines using genetic algorithms. Renewable Energy 30:259–70. doi:10.1016/j.renene.2004.05.007.
  • Hakli, H. 2019. A new approach for wind turbine placement problem using modified differential evolution algorithm. Turkish Journal of Electrical Engineering & Computer Sciences 27:4659–72. doi:10.3906/elk-1901-192.
  • Holland, J. 1975. Adaption in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press.
  • Huang, H.-S. 2009. Efficient hybrid distributed genetic algorithms for wind turbine positioning in large wind farms. 2009 IEEE International Symposium on Industrial Electronics, 2196–201. IEEE. doi:10.1109/ISIE.2009.5213603
  • Ituarte-Villarreal, C. M., and J. F. Espiritu. 2011. Optimization of wind turbine placement using a viral based optimization algorithm. Procedia Computer Science 6:469–74. doi:10.1016/j.procs.2011.08.087.
  • Jensen, N. O. 1983. A note on wind generator interaction, Risø National Laboratory.
  • Kumawat, M., N. Gupta, N. Jain, and R. Bansal. 2020. Jaya algorithm based optimal allocation of distributed energy resources. In Intelligent computing techniques for smart energy systems, 805–14. Springer. doi:10.1007/978-981-15-0214-9_85.
  • Mittal, A. 2010. Optimization of the layout of large wind farms using genetic algorithm. MS thesis. Department of Mechanical and Aerospace Engineering, Case Western Reserve University.
  • Mittal, P., K. Kulkarni, and K. Mitra. 2016. A novel hybrid optimization methodology to optimize the total number and placement of wind turbines. Renewable Energy 86:133–47. doi:10.1016/j.renene.2015.07.100.
  • Mittal, P., and K. Mitra. 2018. Determining layout of a wind farm with optimal number of turbines: A decomposition based approach. Journal of Cleaner Production 202:342–59. doi:10.1016/j.jclepro.2018.08.093.
  • Mittal, P., and K. Mitra. 2019. In search of flexible and robust wind farm layouts considering wind state uncertainty. Journal of Cleaner Production 119195. doi:10.1016/j.jclepro.2019.119195.
  • Moorthy, C. B., and M. Deshmukh. 2015. A new approach to optimise placement of wind turbines using particle swarm optimisation. International Journal of Sustainable Energy 34:396–405. doi:10.1080/14786451.2013.860140.
  • Mosetti, G., C. Poloni, and B. Diviacco. 1994. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics 51:105–16. doi:10.1016/0167-6105(94)90080-9.
  • Omer, A. M. 2008. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews 12:2265–300. doi:10.1016/j.rser.2007.05.001.
  • Ozgener, O., K. Ulgen, and A. Hepbasli. 2004. Wind and wave power potential. Energy Sources 26:891–901. doi:10.1080/00908310490465948.
  • Panwar, N., S. Kaushik, and S. Kothari. 2011. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 15:1513–24. doi:10.1016/j.rser.2010.11.037.
  • Parada, L., C. Herrera, P. Flores, and V. Parada. 2017. Wind farm layout optimization using a Gaussian-based wake model. Renewable Energy 107:531–41. doi:10.1016/j.renene.2017.02.017.
  • Patel, J., V. Savsani, V. Patel, and R. Patel. 2017. Layout optimization of a wind farm to maximize the power output using enhanced teaching learning based optimization technique. Journal of Cleaner Production 158:81–94. doi:10.1016/j.jclepro.2017.04.132.
  • Pookpunt, S., and W. Ongsakul. 2013. Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renewable Energy 55:266–76. doi:10.1016/j.renene.2012.12.005.
  • Pouraltafi-Kheljan, S., A. Azimi, B. Mohammadi-ivatloo, and M. Rasouli. 2018. Optimal design of wind farm layout using a biogeographical based optimization algorithm. Journal of Cleaner Production 201:1111–24. doi:10.1016/j.jclepro.2018.07.217.
  • Prakash, T., V. Singh, S. Singh, and S. Mohanty. 2017. Binary Jaya algorithm based optimal placement of phasor measurement units for power system observability.
  • Rakhshani, E., H. Mehrjerdi, and A. Iqbal. 2020. Hybrid wind-diesel-battery system planning considering multiple different wind turbine technologies installation. Journal of Cleaner Production 247:119654. doi:10.1016/j.jclepro.2019.119654.
  • Rao, R. 2016. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations 7:19–34. doi:10.5267/j.ijiec.2015.8.004.
  • Rao, R. V. 2019. Jaya: An advanced optimization algorithm and its engineering applications. Switzerland: Springer International Publishing. doi:10.1007/978-3-319-78922-4.
  • Rao, R. V., and A. Saroj. 2019. An elitism-based self-adaptive multi-population Jaya algorithm and its applications. Soft Computing 23:4383–406. doi:10.1007/s00500-018-3095-z.
  • Rao, R. V., D. P. Rai, and J. Balic. 2017. A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence 61:103–25. doi:10.1016/j.engappai.2017.03.001.
  • Rehman, S., S. Ali, and S. A. Khan. 2016. Wind farm layout design using cuckoo search algorithms. Applied Artificial Intelligence 30:899–922. doi:10.1080/08839514.2017.1279043.
  • Shoaib, M., I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems. 2019. Assessment of wind energy potential using wind energy conversion system. Journal of Cleaner Production 216:346–60. doi:10.1016/j.jclepro.2019.01.128.
  • Singh, P., and H. Chaudhary. 2020. Optimal shape synthesis of a metallic flywheel using non-dominated sorting Jaya algorithm. Soft Computing 24:6623–34. doi:10.1007/s00500-019-04302-x.
  • The Global Wind Energy Council. 2016. Global wind report 2016.
  • UNDP. 2000. World energy assessment 2000 – Energy and the challenge of sustainability. New York, NY: UNDP.
  • Uzlu, E. 2019. Application of Jaya algorithm-trained artificial neural networks for prediction of energy use in the nation of Turkey. Energy Sources, Part B: Economics, Planning, and Policy 14:183–200. doi:10.1080/15567249.2019.1653405.
  • Wan, C., J. Wang, G. Yang, X. Li, and X. Zhang. 2009a. Optimal micro-siting of wind turbines by genetic algorithms based on improved wind and turbine models. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 5092–96. IEEE. doi:10.1109/CDC.2009.5399571
  • Wan, C., J. Wang, G. Yang, and X. Zhang. 2009b. Optimal siting of wind turbines using real-coded genetic algorithms. Proceedings of European wind energy association conference and exhibition, Marseille, France, 16–19 March 2009, 1–6.
  • Warid, W. 2020. Optimal power flow using the AMTPG-Jaya algorithm. Applied Soft Computing 106252. doi:10.1016/j.asoc.2020.106252.
  • Wu, C., and Y. He. 2020. Solving the set-union knapsack problem by a novel hybrid Jaya algorithm. Soft Computing 24:1883–902. doi:10.1007/s00500-019-04021-3.
  • Xiang, W.-L., M.-Q. An, Y.-Z. Li, R.-C. He, and J.-F. Zhang. 2014. A novel discrete global-best harmony search algorithm for solving 0-1 knapsack problems. Discrete Dynamics in Nature and Society 2014. doi:10.1155/2014/573731.
  • Zou, D., L. Gao, S. Li, and J. Wu. 2011. Solving 0–1 knapsack problem by a novel global harmony search algorithm. Applied Soft Computing 11:1556–64. doi:10.1016/j.asoc.2010.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.