686
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Exergetic and exergoeconomic analyzes of compressed natural gas as an alternative fuel for a diesel engine

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3722-3741 | Received 22 Feb 2020, Accepted 10 Aug 2020, Published online: 03 Sep 2020

References

  • Aghbashlo, M., M. Tabatabaei, E. Khalife, T. Roodbar Shojaei, and A. Dadak. 2018. Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. Energy 149:967–78. doi:10.1016/j.energy.2018.02.082.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, B. Khoshnevisan, M. A. Rajaeifar, and M. Pakzad. 2017. Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Conversion and Management 148:1–15. doi:10.1016/j.enconman.2017.05.048.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, M. Mirzajanzadeh, M. Ardjmand, and A. Rashidi. 2016. Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renewable Energy 93:353–68. doi:10.1016/j.renene.2016.02.077.
  • Akbarian, E., and B. Najafi. 2019. A novel fuel containing glycerol triacetate additive, biodiesel and diesel blends to improve dual-fuelled diesel engines performance and exhaust emissions. Fuel 236:666–76. doi:10.1016/j.fuel.2018.08.142.
  • Arya, S., A. Sharma, M. Rawat, and A. Agrawal. 2020. Tyre pyrolysis oil as an alternative fuel: A review. Materials Today: Proceedings.
  • Atmanli, A. 2016. Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel 176:209–15. doi:10.1016/j.fuel.2016.02.076.
  • Aydin, H. 2013. Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle. Energy 57:766–74. doi:10.1016/j.energy.2013.05.018.
  • Balli, O. 2017. Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner. International Journal of Turbo and Jet Engines. doi:10.1515/tjj-2017-0019.
  • Balli, O., and A. Hepbasli. 2014. Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy 64:582–600. doi:10.1016/j.energy.2013.09.066.
  • Ban-Weiss, G. A., J. Y. Chen, B. A. Buchholz, and R. W. Dibble. 2007. A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory. Fuel Processing Technology 88 (7):659–67. doi:10.1016/j.fuproc.2007.01.007.
  • Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization. USA: John Wiley&Sons Inc.
  • Caliskan, H., M. E. Tat, and A. Hepbasli. 2009. Performance assessment of an internal combustion engine at varying dead (reference) state temperatures. Applied Thermal Engineering 29 (16):3431–36. doi:10.1016/j.applthermaleng.2009.05.021.
  • Cavalcanti, E. J. C., M. Carvalho, and A. A. V. Ochoa. 2019. Exergoeconomic and exergoenvironmental comparison of diesel-biodiesel blends in a direct injection engine at variable loads. Energy Conversion and Management 183:450–61. doi:10.1016/j.enconman.2018.12.113.
  • Chacko, N., and T. Thangaraja. 2020. Effect of pilot and post fueling on the combustion and emission characteristics of a light-duty diesel engine powered with diesel and waste cooking biodiesel blend. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–24. doi:10.1080/15567036.2020.1791285.
  • Chen, H., J. He, and X. Zhong. 2019. Engine combustion and emission fuelled with natural gas: A review. Journal of the Energy Institute 92 (4):1123–36. doi:10.1016/j.joei.2018.06.005.
  • Clean Cities Alternative Fuel Price Report. 2019. Washington.
  • Deniz, C., and B. Zincir. 2016. Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production 113:438–49. doi:10.1016/j.jclepro.2015.11.089.
  • Dhyani, V., and K. A. Subramanian. 2019. Experimental based comparative exergy analysis of a multi-cylinder spark ignition engine fuelled with different gaseous (CNG, HCNG, and hydrogen) fuels. International Journal of Hydrogen Energy 44:20440–51. doi:10.1016/j.ijhydene.2019.05.229.
  • Dolas, D. R., M. D. Jaybhaye, and S. D. Deshmukh. 2014. Prediction of repair & maintenance costs of diesel engine. International Journal of Recent Advances in Mechanical Engineering 3 (1):63–69.
  • ECO-COSTS. 2007. Life Cycle Assessment (LCA) data on emissions and material depletion. [Online]. http://www.ecocostsvalue.com/EVR/model/theory/subject/5-data.html.
  • Elsharkawy, E. A. 2020. Effect of several types of bio-diesels and their mixtures on the combustion, performance, and emission characteristics of DI diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1785589.
  • Ghadikolaei, M. A., C. S. Cheung, and K. Yung. 2016. Study of performance and emissions of marine engines fueled with liquefied natural gas (LNG). Proceedings of 7th PAAMES and AMEC2016, Hong Kong.
  • Górniak, A., K. Midor, J. Kaźmierczak, and W. Kaniak. 2018. Advantages and disadvantages of using methane from CNG in motor vehicles in polish conditions. Multidisciplinary Aspects of Production Engineering 1 (1):241–47. doi:10.2478/mape-2018-0031.
  • Goyal, P., and Sidhartha. 2003. Present scenario of air quality in Delhi: A case study of CNG implementation. Atmospheric Environment 37:5423–31. doi:10.1016/j.atmosenv.2003.09.005.
  • Gümüş, M., and M. Atmaca. 2013. Energy and exergy analyses applied to a CI engine fueled with diesel and natural gas. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 35 (11):1017–27. doi:10.1080/15567036.2010.516312.
  • Hairuddin, A. A., T. Yusaf, and A. P. Wandel. 2014. A review of hydrogen and natural gas addition in diesel HCCI engines. Renewable and Sustainable Energy Reviews 32:739–61. doi:10.1016/j.rser.2014.01.018.
  • Hall, J., M. Bassett, B. Hibberd, and S. Streng. 2016. Heavily downsized demonstrator engine optimised for CNG operation. SAE International Journal of Engines 9 (4):2250–61. doi:10.4271/2016-01-2363.
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. 2nd ed. Singapore: McGraw-Hill, Inc.
  • Hora, T. S., P. C. Shukla, and A. K. Agarwal. 2016. Particulate emissions from hydrogen enriched compressed natural gas engine. Fuel 166:574–80. doi:10.1016/j.fuel.2015.11.035.
  • Jamrozik, A., W. Tutak, and K. G. Rogalinski. 2019. An experimental study on the performance and emission of the diesel/CNG dual-fuel combustion mode in a stationary CI engine. Energies 12:3857. doi:10.3390/en12203857.
  • Jiaqiang, E., M. Pham, D. Zhao, Y. Deng, D. Le, W. Zuo, H. Zhu, T. Liu, Q. Peng, and Z. Zhang. 2017. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renewable and Sustainable Energy Reviews 80:620–47. doi:10.1016/j.rser.2017.05.250.
  • Kakaee, A., and M. Karimi. 2018. A comparative study on influence of natural gas composition on the performance of a CNG engine. Mapta Journal of Mechanical and Industrial Engineering (MJMIE) 2 (3):9–18. doi:10.33544/mjmie.v2i3.76.
  • Karagöz, Y., T. Sandalci, U. O. Koylu, A. S. Dalkiliç, and S. Wongwises. 2016. Effect of the use of natural gas-diesel fuel mixture on performance, emissions, and combustion characteristics of a compression ignition engine. Advances in Mechanical Engineering 8 (4):1–13.
  • Karavalakis, G., T. D. Durbin, M. Villela, and J. W. Miller. 2012. Air pollutant emissions of light-duty vehicles operating on various natural gas compositions. Journal of Natural Gas Science and Engineering 4:8–16. doi:10.1016/j.jngse.2011.08.005.
  • Kaya, C., and G. Kökkülünk. 2020. Biodiesel as alternative additive fuel for diesel engines: An experimental and theoretical investigation on emissions and performance characteristics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–23. doi:10.1080/15567036.2020.1774685.
  • Kolli, V., S. Gadepalli, J. Debbarma, P. Mandal, and S. Barathula. 2020. Experimental analysis on performance, combustion & emissions of a diesel engine fueled by Aegle marmelos seed oil biodiesel with additives: Graphene Nanosheets and oxygenated diethyl ether. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2020.1783393.
  • Kotas, T. J. 1995. The exergy method of thermal plant analysis. Florida: Krieger Publishing Company.
  • Kumar, A., A. Upadhyay, B. Tongvya, and C. Gupta. 2019. Study of alternative fuels and their knock behavior and various suppression methods for engine knock. Indore: IPS Academy, Institute of Engineering & Science.
  • Kuppa, K., H. D. Nguyen, A. Goldmann, B. Korb, G. Wachtmeister, and F. Dinkelacker. 2019. Numerical modelling of unburned hydrocarbon emissions in gas engines with varied fuels. Fuel 254:115532. doi:10.1016/j.fuel.2019.05.115.
  • Lazzaretto, A., and G. Tsatsaronis. 2006. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 31:1257–89. doi:10.1016/j.energy.2005.03.011.
  • Liu, J., and E. C. Dumitrescu. 2019. Lean burn characteristics of a heavy duty diesel engine retrofitted to natural gas spark ignition. Journal of Engineering for Gas Turbines and Power 141: doi:10.1115/1.4042501.
  • Liu, J., F. Yang, H. Wang, M. Ouyang, and S. Hao. 2013. Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Applied Energy 110:201–06. doi:10.1016/j.apenergy.2013.03.024.
  • Mahla, S. K., A. Dhir, K. J. S. Gill, H. M. Cho, H. C. Lim, and B. S. Chauhan. 2018. Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine. Energy 152:303–12. doi:10.1016/j.energy.2018.03.072.
  • Makarova, I., G. Sadygova, and K. Shubenkova. 2018. Compressed natural gas as motor fuel: Possibilities, problems and solutions. The Archives of Automative Engineering- Archiwum Motoryzacji 82 (4):43–62.
  • Moran, M. J. 1989. Availability analysis: A guide to efficient energy use. New York, NY: ASME Press.
  • Muralidharan, M., A. Srivastava, and M. Subramanian. 2020 . A technical review on performance and emissions of compressed natural gas - diesel dual fuel engine. SAE Technical Paper, vol. 28.
  • Nithyanandan, K., J. Zhang, Y. Li, X. Meng, R. Donahue, Chia-Fon F. Lee and H. Dou. 2015. Diesel-Like Efficiency Using CNG/Diesel Dual-Fuel Combustion. Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference, Houston, TX, USA.
  • Nithyanandan, K., Y. Lin, R. Donahue, X. Meng, J. Zhang, C. fon, and F. Lee. 2016. Characterization of soot from diesel-CNG dual-fuel combustion in a CI engine. Fuel 184:145–52. doi:10.1016/j.fuel.2016.06.028.
  • Panithasan, M. S., D. Gopalakichenin, G. Venkadesan, and M. Malairajan. 2020. Evaluating the working characters of a diesel engine fueled with biodiesel blends added with rice husk Nano particles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2020.1767726.
  • Papagiannakis, R. G., and D. T. Hountalas. 2004. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas. Energy Conversion and Management 45 (18–19):2971–87. doi:10.1016/j.enconman.2004.01.013.
  • Papagiannakis, R. G., S. R. Krishnan, D. C. Rakopoulos, K. K. Srinivasan, and C. D. Rakopoulos. 2017. A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads. Fuel 202:675–87. doi:10.1016/j.fuel.2017.05.012.
  • Patel Nimit, M., and A. D. Patel. 2016. Conversion of diesel engine to port injection CNG engine using gaseous injector nozzle multi holes geometries improvement : A review. International Journal of Automative Engineering 6 (3):2220–35.
  • Patel, T., A. Dubey, and M. Feroskhan. 2020. Investigation on the effect of intake air pressure in a biogas-diesel fueled dual-fuel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1785592.
  • Paul, A., R. Panua, and D. Debroy. 2017. An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by Diesel-ethanol-biodiesel blends. Energy 141:839–52. doi:10.1016/j.energy.2017.09.137.
  • Pereira, A. R. B., A. A. B. Santos, L. L. N. Guarieiro, J. B. H. Cavalcante, and J. P. Do. Anjos. 2019. Experimental evaluation of CO, NOx, formaldehyde and acetaldehyde emission rates in a combustion chamber with OEC under acoustic excitation. Energy Reports 5:1163–71. doi:10.1016/j.egyr.2019.08.010.
  • Pulkrabek, W. W. 2016. Engineering fundamentals of the internal combustion engine. 1st ed. Izmir: İzmir Güven Kitabevi.
  • Senthilraja, R., V. Sivakumar, K. Thirugnanasambandham, and N. Nedunchezhian. 2016. Performance, emission and combustion characteristics of a dual fuel engine with diesel-ethanol-cotton seed oil methyl ester blends and compressed natural gas (CNG) as fuel. Energy 112:899–907. doi:10.1016/j.energy.2016.06.114.
  • Sharafian, A., P. Blomerus, and W. Mérida. 2019. Natural gas as a ship fuel: Assessment of greenhouse gas and air pollutant reduction potential. Energy Policy 131:332–46. doi:10.1016/j.enpol.2019.05.015.
  • Sharma, A., and B. Dhakal. 2013. Performance and Emission Studies of a Diesel Engine Using Biodiesel Tyre Pyrolysis Oil Blends. SAE Technical Paper.
  • Sharma, A., G. Gupta, and A. Agrawal. 2020. Utilization of waste lubricating oil as a diesel engine fuel utilization of waste lubricating oil as a diesel engine fuel. IOP Conference Series: Materials Science and Engineering, Pattaya, Thailand.
  • Sharma, A., and S. Murugan. 2014. Influence of fuel injection timing on the performance and emission characteristics of a diesel engine fueled with jatropha methyl ester- tyre pyrolysis oil blend. Applied Mechanics and Materials 592–594:1627–31. doi:10.4028/www.scientific.net/AMM.592-594.1627.
  • Shim, E., H. Park, and C. Bae. 2018. Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine. Applied Energy 225:1068–77. doi:10.1016/j.apenergy.2018.05.060.
  • Speirs, J., P. Balcombe, P. Blomerus, M. Stettler, P. Achurra-Gonzalez, M. Woo, D. Ainalis, J. Cooper, A. Sharafian, W. Merida et al. 2020. Natural gas fuel and greenhouse gas emissions in trucks and ships. Progress in Energy. 2(1):012002. doi:10.1088/2516-1083/ab56af.
  • Tat, M. E. 2011. Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel. Fuel Processing Technology 92:1311–21. doi:10.1016/j.fuproc.2011.02.006.
  • Tripathi, G., P. Sharma, and AtulDhar. 2020. Computational study of diesel dual fuel engine characteristics for varying methane energy shares. International Journal of Advanced Research in Engineering and Technology (IJARET) 11 (3):311–20.
  • Verma, S., L. M. Das, S. S. Bhatti, and S. C. Kaushik. 2017. A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Conversion and Management 151:764–77. doi:10.1016/j.enconman.2017.09.035.
  • Verma, S., L. M. Das, S. C. Kaushik, and S. S. Bhatti. 2019. The effects of compression ratio and EGR on the performance and emission characteristics of diesel-biogas dual fuel engine. Applied Thermal Engineering 150:1090–103. doi:10.1016/j.applthermaleng.2019.01.080.
  • Wei, L., and P. Geng. 2016. A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Processing Technology 142:264–78. doi:10.1016/j.fuproc.2015.09.018.
  • Yang, W. M., H. An, J. Li, and L. Duan. 2015. Impact of methane addition on the performance of biodiesel fueled diesel engine. Applied Energy 160:784–92. doi:10.1016/j.apenergy.2015.08.103.
  • Yousefi, A., H. Guo, M. Birouk, and B. Liko. 2019. On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection. Applied Energy 242:216–31. doi:10.1016/j.apenergy.2019.03.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.