345
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effect of conical coiled heat transfer fluid tube on charging of phase-change material in a vertical shell and coil type cylindrical thermal energy storage

ORCID Icon & ORCID Icon
Pages 8611-8626 | Received 13 Mar 2020, Accepted 30 Aug 2020, Published online: 05 Oct 2020

References

  • Accessed 15 February 2020. https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT60_EN_06082018.PDF
  • Ahmadi, R., M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury. 2018. Phase change in spiral coil heat storage systems. Sustainable Cities and Society 38:145–57. doi:10.1016/j.scs.2017.12.026.
  • Avci, M., and M. Y. Yazici. 2013. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage. Energy Conversion and Management 73:271–77. doi:10.1016/j.enconman.2013.04.030.
  • Bazri, S., I. A. Badruddin, M. S. Naghavi, O. K. Seng, and S. Wongwises. 2019. An analytical and comparative study of the charging and discharging processes in a latent heat thermal storage tank for solar water heater system. Solar Energy 185:424–38. doi:10.1016/j.solener.2019.04.046.
  • Belusko, M., N. H. S. Tay, M. Liu, and F. Bruno. 2016. Effective tube-in-tank PCM thermal storage for CSP applications, Part 2: Parametric assessment and impact of latent fraction. Solar Energy 139:744–56. doi:10.1016/j.solener.2015.09.034.
  • Borhani, S. M., M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury. 2019. Investigation of phase change in a spiral-fin heat exchanger. Applied Mathematical Modelling 67:297–314. doi:10.1016/j.apm.2018.10.029.
  • Dinker, A., M. Agarwal, and G. D. Agarwal. 2017. Heat storage materials, geometry and applications: A review. Journal of the Energy Institute 90 (1):1–11. doi:10.1016/j.joei.2015.10.002.
  • Elsayed, A. O. 2018. Numerical investigation on PCM melting in triangular cylinders. Alexandria Engineering Journal 57:2819–28. doi:10.1016/j.aej.2018.01.005.
  • Erek, A., and I. Dincer. 2009. A new approach to energy and exergy analyses of latent heat storage unit. Heat Transfer Engineering 30 (6):506–15. doi:10.1080/01457630802529271.
  • Esapour, M., M. J. Hosseini, A. A. Ranjbar, Y. Pahamli, and R. Bahrampoury. 2015. Phase change in multi-tube heat exchangers. Renewable Energy 85:1017–25. doi:10.1016/j.renene.2015.07.063.
  • Fang, Y., J. Niu, and S. Deng. 2018. Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM. Energy and Buildings 160:10–18. doi:10.1016/j.enbuild.2017.12.006.
  • Fang, Y., J. Niu, and S. Deng. 2019. An analytical technique for the optimal designs of tube-in-tank thermal energy storage systems using PCM. International Journal of Heat and Mass Transfer 128:849–59. doi:10.1016/j.ijheatmasstransfer.2018.08.138.
  • Ferrer, G., A. Sole, C. Barreneche, I. Martorell, and L. F. Cabeza. 2015. Corrosion of metal containers for use in PCM energy storage. Renewable Energy 76:465–69. doi:10.1016/j.renene.2014.11.036.
  • Hirmiz, R., H. M. Teamah, M. F. Lightstone, and J. S. Cotton. 2019. Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management. Energy and Buildings 190:103–18. doi:10.1016/j.enbuild.2019.02.026.
  • Jesumathy, S. P., M. Udayakumar, S. Suresh, and S. Jegadheeswaran. 2014. An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. Journal of the Taiwan Institute of Chemical Engineers 45 (4):1298–306. doi:10.1016/j.jtice.2014.03.007.
  • Jmal, I., and M. Baccar. 2018. Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection. International Journal of Heat and Mass Transfer 127:714–27. doi:10.1016/j.ijheatmasstransfer.2018.08.058.
  • Kabbara, M., D. Dominic Groulx, and A. Joseph. 2018. A parametric experimental investigation of the heat transfer in a coil-in-tank latent heat energy storage system. International Journal of Thermal Sciences 130:395–405. doi:10.1016/j.ijthermalsci.2018.05.006.
  • Kadivar, M. R., M. A. Moghimi, P. Sapin, and C. N. Markides. 2019. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store. Journal of Energy Storage 26:101030. doi:10.1016/j.est.2019.101030.
  • Kline, S., and F. McClintock. 1953. Describing uncertainties in single-sample experiments. Mechanical Engineering 75:3–8.
  • Kousksou, T., M. Mahdaoui, A. Ahmed, and A. A. Msaad. 2014. Melting over a wavy surface in a rectangular cavity heated from below. Energy 64:212–19. doi:10.1016/j.energy.2013.11.033.
  • Lafri, D., D. Semmar, A. Hamid, and M. Ouzzane. 2019. Experimental investigation on combined sensible and latent heat storage in two different configurations of tank filled with PCM. Applied Thermal Engineering 149:625–32. doi:10.1016/j.applthermaleng.2018.12.028.
  • Mahdaoui, M., T. Kousksou, S. Blancher, A. A. Msaad, T. E. Rhafiki, and M. Mouqallid. 2014. A numerical analysis of solid–liquid phase change heat transfer around a horizontal cylinder. Applied Mathematical Modelling 38 (3):1101–10. doi:10.1016/j.apm.2013.08.002.
  • Mahdi, J. M., and E. C. Nsofor. 2017. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Energy 126:501–12. doi:10.1016/j.energy.2017.03.060.
  • Mehdaoui, F., M. Hazami, H. Taghouti, M. Noro, R. Lazzarin, and A. A. Guizania. 2018. An experimental and a numerical analysis of the dynamic behavior of PCM- 27 included inside a vertical enclosure: Application in space heating purposes. International Journal of Thermal Sciences 133:252–65. doi:10.1016/j.ijthermalsci.2018.07.027.
  • Mehta, D. S., K. Solanki, M. K. Rathod, and J. Banerjee. 2019a. Influence of orientation on thermal performance of shell and tube latent heat storage unit. Applied Thermal Engineering 157:113719. doi:10.1016/j.applthermaleng.2019.113719.
  • Mehta, D. S., K. Solanki, M. K. Rathod, and J. Banerjee. 2019b. Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. Journal of Energy Storage 23:344–62. doi:10.1016/j.est.2019.03.007.
  • Mekrisuh, K. U., D. Dushyant Singh, and Udayaraj. 2020. Performance analysis of a vertically oriented concentric-tube PCM based thermal energy storage system: Parametric study and correlation development. Renewable Energy 149:902–16. doi:10.1016/j.renene.2019.10.074.
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1:3–17. doi:10.1016/0894-1777(88)90043-X.
  • Motahar, S., and R. Khodabandeh. 2016. Experimental study on the melting and solidification of a phase change material enhanced by heat pipe. International Communications in Heat and Mass Transfer 73:1–6. doi:10.1016/j.icheatmasstransfer.2016.02.012.
  • Sardari, P. T., D. Grant, D. Giddings, G. S. Walker, and M. Gillott. 2019. Composite metal foam/PCM energy store design for dwelling space air heating. Energy Conversion and Management 201:112151. doi:10.1016/j.enconman.2019.112151.
  • Seddegh, S., S. M. Tehrani, W. Wang, F. Cao, and R. A. Taylor. 2018. Comparison of heat transfer between cylindrical and conical vertical shell-and tube latent heat thermal energy storage systems. Applied Thermal Engineering 130:1349–62. doi:10.1016/j.applthermaleng.2017.11.130.
  • Seddegh, S., X. Wang, M. M. Joybari, and F. Haghighat. 2017. Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems. Energy 137:69–82. doi:10.1016/j.energy.2017.07.014.
  • Senthil, R. 2019. Effect of position of heat transfer fluid tube on the melting of phase change material in cylindrical thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2019.1649751.
  • Senthil, R. 2020. Effect of charging of phase change material in vertical and horizontal rectangular enclosures in a concentrated solar receiver. Case Studies in Thermal Engineering 21:100653. doi:10.1016/j.csite.2020.100653.
  • Senthil, R., A. Patel, R. Rao, and S. Ganeriwal. 2020. Melting behavior of phase change material in a solar vertical thermal energy storage with variable length fins added on the heat transfer tube surfaces. International Journal of Renewable Energy Development 9 (3):361–67. doi:10.14710/ijred.2020.29879.
  • Sharifi, N., A. Faghri, T. L. Bergman, and C. E. Andraka. 2015. Simulation of heat pipe-assisted latent heat thermal energy storage with simultaneous charging and discharging. International Journal of Heat and Mass Transfer 80:170–79. doi:10.1016/j.ijheatmasstransfer.2014.09.013.
  • Siyabi, I. A., S. Khanna, T. Mallick, and S. Sundaram. 2019. An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. Journal of Energy Storage 23:57–68. doi:10.1016/j.est.2019.03.010.
  • Tehrani, S. S. M., R. A. Taylor, P. Saberi, and G. Diarce. 2016. Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants. Renewable Energy 96:120–36. doi:10.1016/j.renene.2016.04.036.
  • Underwood, C. P., T. Shepherd, S. J. Bull, and S. Joyce. 2018. Hybrid thermal storage using coil-encapsulated phase change materials. Energy and Buildings 159:357–69. doi:10.1016/j.enbuild.2017.10.095.
  • Wang, Y., L. Wang, N. Xie, X. Lin, and H. Chen. 2016. Experimental study on the melting and solidification behaviour of erythritol in a vertical shell-and-tube latent heat thermal storage unit. International Journal of Heat and Mass Transfer 99:770–81. doi:10.1016/j.ijheatmasstransfer.2016.03.125.
  • Xiao, X., and P. Zhang. 2015. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – Discharging process. Energy 80:177–89. doi:10.1016/j.energy.2014.11.061.
  • Yazici, M. Y., M. Avci, O. Aydin, and M. Akgun. 2014a. On effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM. Applied Thermal Engineering 64:1–9. doi:10.1016/j.applthermaleng.2013.12.005.
  • Yazici, M. Y., M. Avci, O. Aydin, and M. Akgun. 2014b. Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study. Solar Energy 101:291–98. doi:10.1016/j.solener.2014.01.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.