763
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Radiative heat transfer analysis of 37-pin fuel bundle of Indian pressurized heavy water reactor under heat-up condition: experimental, numerical and analytical study

ORCID Icon, &
Pages 6173-6191 | Received 03 Jun 2020, Accepted 30 Aug 2020, Published online: 09 Oct 2020

References

  • Ajay, K., M. Sharma, R. Kumar, D. Mukhopadhyay, P. Majumdar, and A. Gupta. 2017. Variation of total emissivity of fuel pin of IPHWR with temperature. In Proceedings of the 24 th National and 2 nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Begel House Inc, BITS Pilani, Hyderabad, India.
  • Ajay, K., R. Kumar, A. Gupta, O. Gokhle, D. Mukhopadhyay, and A. K. Das. 2020a. Experimental simulation of channel heat-up behaviour under slumped fuel pin condition for Indian PHWR. Annals of Nuclear Energy 146:107615.
  • Ajay, K., R. Kumar, D. Mukhopadhyay, A. Gupta, A. K. Das, and O. Gokhale. 2019. Experimental investigation of radiation heat transfer in coolant channel under impaired cooling scenario for Indian PHWR. Nuclear Engineering and Design 347:45–52. doi:10.1016/j.nucengdes.2019.03.015.
  • Ajay, K., R. Kumar, D. Mukhopadhyay, O. Gokhle, A. Gupta, and A. K. Das. 2020b. Influence of PT-CT contact on PHWR fuel channel thermal behaviour under accident condition–An experimental study. Nuclear Engineering and Design 361, 110543.
  • Bowslaugh, D. 1993. CHAN-IIA MOD 2.0: Prediction of CANDU fuel channel behaviour under prolonged low flows—Program description. TTR-490, Atomic Energy of Canada Limited.
  • Chandrasekhar, S. 1950. Radiative transfer. London: Oxford University Press.
  • Churchill, S. W., & Chu, H. H. (1975). Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International journal of heat and mass transfer, 18(9), 1049–1053. doi:10.1016/0017-9310(75)90222-7
  • Fluent, A. N. S. Y. S. 2019. R1 user’s guide. Canonsburg, Pennsylvania, USA: ANSYS Inc.
  • Gupta, S. K., B. K. Dutta, V. Venkat Raj, and A. Kokodkar. 1997. A study of the Indian PHWR reactor channel under prolonged deteriorated flow conditions. No. IAEA-TECDOC–984.
  • Hagrman, D. L., and G. A. Reymann. 1979. MATPRO-Version 11: A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior. No. NUREG/CR-0497; TREE-1280, Idaho National Engineering Lab, Idaho Falls (USA).
  • Hanna, B. N. 1998. CATHENA: A thermalhydraulic code for CANDU analysis. Nuclear Engineering and Design 180 (2):113–31.
  • Hedley, J. B. 1994. MATRIX: A stand-alone preprocessor utility for CATHENA users. COG-93-53. Atomic Energy of Canada Limited.
  • Hildebrandt, J. G., C. B. So, G. E. Gillespie, and G. MacLean (1983). Radial heat transfer from fuel to moderator during LOCAs for CANDU PHW reactors.
  • Högberg, L. 2013. Root causes and impacts of severe accidents at large nuclear power plants. Ambio 42 (3):267–84. doi:10.1007/s13280-013-0382-x.
  • Kim, H. T., B. W. Rhee, and J. H. Park. 2006. Benchmark calculations of a radiation heat transfer for a CANDU fuel channel analysis using the CFD code. Journal of Nuclear Science and Technology 43 (11):1422–30. doi:10.1080/18811248.2006.9711236.
  • Kline, S. J., and F. A. McClintock. 1953. Analysis of uncertainty in single-sample experiments. Mechanical Engineering 75:3–9.
  • Lee, S. 2008. Analysis of severe accidents in pressurized heavy water reactors. IAEA-TECDOC-1594, Vienna.
  • Lei, Q. M., and T. M. Goodman. 1996. Validation of radiation heat transfer in CATHENA,’’ Proc. Int. Conf. on Simulation Methods in Nuclear Engineering, Montreal, Canada, Sep. 8–11, 1996.
  • M. H. Bayoumi, W. C. Muir. 1995. Post-test simulation and analysis of the second full scale CHAN 28-element experiment (Validation of CHAN-II (MOD6) against experiments), Proc. 16th Ann. Conf. of Canadian Nuclear Society, Saskatoon, Canada, June 4–7
  • Modest, M. F. 2013. The method of discrete ordinates (sn-approximation). In Radiative heat transfer, ed. M. F. Modest, 541–84. 3rd ed. Boston, MA: Academic Press.
  • Mukhopadhyay, D., P. Majumdar, G. Behera, S. K. Gupta, and V. V. Raj. 2002. Thermal analysis of severe channel damage caused by a stagnation channel break in a PHWR. Journal of Pressure Vessel Technology 124 (2):161–67.
  • Shewfelt, R. S. W., L. W. Lyall, and D. P. Godin. 1984. A high-temperature creep model for Zr-2.5 wt% Nb pressure tubes. Journal of Nuclear Materials 125 (2):228–35. doi:10.1016/0022-3115(84)90548-8.
  • So, C. B., G. E. Gillespie, R. G. Moyer, and D. G. Litke. 1987. The experimental determination of circumferential temperature distributions developed in pressure tube during slow coolant boil down. In: Proc. CNS 8th Annual Conference, Saint John, pp. 241–248.
  • Westbye, C. J., A. C. Brito, J. C. MacKinnon, H. E. Sills, and V. J. Langman. 1995. Development, Verification and Validation of the Fuel Channel Behaviour Computer Code FACTAR, Presented at the 16th Annual Canadian Nuclear Society Conference, Saskatoon, Saskatchewan, June 4-7 1995.
  • Yadav, A. K., P. Majumdar, R. Kumar, B. Chatterjee, A. Gupta, and D. Mukhopadhyay. 2013. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR. Nuclear Engineering and Design 255:138–45. doi:10.1016/j.nucengdes.2012.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.