173
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optical and photovoltaic properties of substituted alizarin dyes for dye-sensitized solar cells application

ORCID Icon, , &
Pages 2569-2582 | Received 16 Nov 2019, Accepted 26 Sep 2020, Published online: 22 Oct 2020

References

  • Akila, Y., N. Muthukumarasamy, S. Agilan, T. K. Mallick, S. Senthilarasu, and D. Velauthapillai. 2016. Enhanced performance of natural dye sensitised solar cells fabricated using rutile TiO2 nanorods. Optical Materials 58:76–83. doi:10.1016/j.optmat.2016.05.009.
  • Al-Alwani, M. A. M., N. A. Ludin, A. B. Mohamad, A. A. H. Kadhum, and A. Mukhlus. 2018. Application of dyes extracted from Alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 192:487–98. doi:10.1016/j.saa.2017.11.018.
  • Ananthi, N., M. S. P. Subathra, S. C. Emmanuel, and N. M. Kumar. 2020. Preparation and characterization of two dye-sensitized solar cells using Acalypha Godseffia and Epipremnum Aureum dyes as sensitizers. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (13):1662–73. doi:10.1080/15567036.2019.1604876.
  • Asbury, J. B., Y. Q. Wang, E. Hao, H. N. Ghosh, and T. Lian. 2001. Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Research on Chemical Intermediates 27 (4–5):393–406. doi:10.1163/156856701104202255.
  • Babu, D. D., P. Naik, and K. S. Keremane. 2020. A simple D-π-A configured carbazole based dye as an active photo-sensitizer: A comparative investigation on different parameters of cell. Journal of Molecular Liquids 310:113189. doi:10.1016/j.molliq.2020.113189.
  • Becke, A. D. 1993. A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics 98:1372. doi:10.1063/1.464304.
  • Benali, B., Z. Lazar, K. Elblidi, B. Lakhrissi, M. Massoui, A. El Assyry, and C. Cazeau-Dubroca. 2006. Solvatochromic effect on photophysical properties of benzimidazolone. Journal of Molecular Liquids 128 (1–3):42–45. doi:10.1016/j.molliq.2005.02.004.
  • Beula, R. J., D. Suganthi, and A. Abiram. 2020. TiO2 photo-electrode with gold capping for improved observation in dye-sensitized solar cell. Applied Physics A 126 (3):1–8. doi:10.1007/s00339-020-3394-y.
  • Błaszczyk, A. 2018. Strategies to improve the performance of metal-free dye-sensitized solar cells. Dyes and Pigments 149:707–18. doi:10.1016/j.dyepig.2017.11.045.
  • Bourass, M., A. Touimi Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S. M. Bouzzine, F. Serein-Spirau, T. Jarrosson, J. P. Lère-Porte, J. M. Sotiropoulos, et al. 2015. Theoretical studies by using the DFT and TD-DFT of the effect of the bridge formed of thienopyrazine in solar cells. Journal of Materials and Environmental Science 6 (6):1542–53.
  • Bourass, M., A. Touimi Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S. M. Bouzzine, F. Serein-Spirau, T. Jarrosson, J. P. Lère-Porte, J. M. Sotiropoulos, et al. 2016. The computational study of the electronic and optoelectronics properties of new materials based on thienopyrazine for application in dye solar cells. Journal of Materials and Environmental Science 7 (3):700–12.
  • Buchanan, R. 2012. A weaver’s garden: Growing plants for natural dyes and fibers. Dover ed. New York: Dover Publications Inc.
  • Chen, M., G. C. Wang, W. Q. Yang, Z. Y. Yuan, X. Qian, J. Q. Xu, Z. Y. Huang, and A. X. Ding. 2019. Enhanced synergetic catalytic effect of Mo2C/NCNTs@Co heterostructures in dye-sensitized solar cells: Fine-tuned energy level alignment and efficient charge transfer behavior. ACS Applied Materials & Interfaces 11 (45):42156–71. doi:10.1021/acsami.9b14316.
  • Ding, W. L., D. M. Wang, Z. Y. Geng, X. L. Zhao, and W. B. Xu. 2013. Density functional theory characterization and verification of high-performance indoline dyes with D-π-A architecture for dye-sensitized solar cells. Dyes and Pigments 98 (1):125–35. doi:10.1016/j.dyepig.2013.02.008.
  • El Assyry, A., B. Benali, Z. Lazar, K. Elblidi, B. Lakhrissi, M. Massoui, and D. Mondieig. 2006. Solvent effect dependence of the dual fluorescence of N,N-dimethylbenzodiazepine. Journal of Molecular Liquids 128 (1–3):46–49. doi:10.1016/j.molliq.2005.06.009.
  • El Assyry, A., R. Jdaa, B. Benali, M. Addou, and A. Zarrouk. 2015. Optical and photovoltaic properties of new quinoxalin-2(1H)-one-based D-A organic dyes for efficient dye-sensitized solar cell using DFT. Environmental Science 6 (9):2612–23.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson. 2009. Gaussian 09, revision a. o2, Vol. 200, 28. Wallingford, CT: Gaussian. Inc.
  • Galappaththi, K., P. Ekanayake, and M. I. Petra. 2018. A rational design of high efficient and low-cost dye sensitizer with exceptional absorptions: Computational study of cyanidin based organic sensitizer. Solar Energy 161:83–89. doi:10.1016/j.solener.2017.12.027.
  • Gao, F., Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel. 2008. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society 130 (32):10720–28. doi:10.1021/ja801942j.
  • Gomez, T., G. Hermann, X. Zarate, J. F. Pérez-Torres, and J. C. Tremblay. 2015. Imaging the ultrafast photoelectron transfer process in alizarin-TiO2. Molecules 20 (8):13830–53. doi:10.3390/molecules200813830.
  • Gong, J., K. Sumathy, Q. Qiao, and Z. Zhou. 2017. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews 68:234–46. doi:10.1016/j.rser.2016.09.097.
  • Gordon, M. S. 1980. The isomers of silacyclopropane. Chemical Physics Letters 76 (1):163–68. doi:10.1016/0009-2614(80)80628-2.
  • Hagfeldt, A., and M. Grätzel. 1995. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews 95 (1):49–68. doi:10.1021/cr00033a003.
  • Huang, J., X. Qian, J. Yang, Y. Niu, C. Xu, and L. Hou. 2020. Construction of Pt-free electrocatalysts based on hierarchical CoS2/N-doped C@Co-WS2 yolk-shell nano-polyhedrons for dye-sensitized solar cells. Electrochimica Acta 340:135949. doi:10.1016/j.electacta.2020.135949.
  • Jen, M., S. Lee, K. Jeon, S. Hussain, and Y. Pang. 2017. Ultrafast intramolecular proton transfer of alizarin investigated by femtosecond stimulated raman spectroscopy. The Journal of Physical Chemistry B 121 (16):4129–36. doi:10.1021/acs.jpcb.6b12408.
  • Juma, J. M., S. A. H. Vuai, and N. Surendra Babu. 2019. TD-DFT investigations on optoelectronic properties of fluorescein dye derivatives in dye-sensitized solar cells (DSSCs). International Journal of Photoenergy 2019:1–8. doi:10.1155/2019/4616198.
  • Keawin, T., R. Tarsang, K. Sirithip, N. Prachumrak, T. Sudyoadsuk, S. Namuangruk, J. Roncali, N. Kungwan, V. Promarak, and S. Jungsuttiwong. 2017. Anchoring number-performance relationship of zinc-porphyrin sensitizers for dye-sensitized solar cells: A combined experimental and theoretical study. Dyes and Pigments 136:697–706. doi:10.1016/j.dyepig.2016.09.035.
  • Lee, J. K., S. M. Lee, L. S. Bin, K. H. Kim, S. E. Cho, S. Jang Il, S. H. Park, W. P. Hwang, M. H. Seo, and M. R. Kim. 2011. Syntheses of triphenylamine-based organic dyes and effects of their acceptor groups on photovoltaic performances of dye sensitized solar cells. Current Applied Physics 11 (6):S140–S146.
  • Li, X. G., Y. W. Liu, M. R. Huang, S. Peng, L. Z. Gong, and M. G. Moloney. 2010. Simple efficient synthesis of strongly luminescent polypyrene with intrinsic conductivity and high carbon yield by chemical oxidative polymerization of pyrene. Chemistry - A European Journal 16 (16):4803–13. doi:10.1002/chem.200902621.
  • Ma, X., W. Wu, Q. Zhang, F. Guo, F. Meng, and J. Hua. 2009. Novel fluoranthene dyes for efficient dye-sensitized solar cells. Dyes and Pigments 82 (3):353–59. doi:10.1016/j.dyepig.2009.02.006.
  • Maddah, H. A., V. Berry, and S. K. Behura. 2020. Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights. Renewable and Sustainable Energy Reviews 121(2020):1–25.
  • Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel. 2014. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6 (3):242–47. doi:10.1038/nchem.1861.
  • Meng, L., Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, et al. 2018. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361 (6407):1094–98. doi:10.1126/science.aat2612.
  • Michaels, H., R. Michael, F. Richard, B. Iacopo, E. Tomas, S. Richard, G. Alessio, and F. Marina. 2020. Dye-sensitized solar cells under ambient light powering machine learning: Towards autonomous smart sensors for the internet of things. Chemical Science 11 (11):2895–906. doi:10.1039/C9SC06145B.
  • Mohammadnezhad, M., S. Gurpreet, M. W. Zhiming, S. Barry, Z. Haiguang, and R. Federico. 2020. Role of carbon nanotubes to enhance the long-term stability of dye-Sensitized solar cells. ACS Photonics 7 (3):653–64. doi:10.1021/acsphotonics.9b01431.
  • Naik, P., M. R. Elmorsy, R. Su, D. D. Babu, A. El-Shafei, and A. V. Adhikari. 2017. New carbazole based metal-free organic dyes with D-π-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. Solar Energy 153(2017):600–610.
  • Naik, P., R. Su, M. R. Elmorsy, A. El-Shafei, and A. V. Adhikari. 2018. New carbazole based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (NCSU-10). Journal of Energy Chemistry 27 (2):351–60.
  • Narayan, M. R. 2012. Review: Dye sensitized solar cells based on natural photosensitizers. Renewable & Sustainable Energy Reviews 16 (1):208–15.
  • Ninis, O., R. Kacimi, H. Bouaamlat, M. Abarkan, and M. Bouachrine. 2017. Theoretical studies of photovoltaic properties for design of new Azo-Pyrrole photo-sensitizer materials as dyes in solar cells. Journal of Materials and Environmental Science 8 (7):2572–78.
  • Ren, Y., D. Sun, Y. Cao, H. Tsao, Y. Yuan, S. Zakeeruddin, P. Wang, and M. Gratzel. 2018. A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. Journal of the American Chemical Society 140 (7):2405–08. doi:10.1021/jacs.7b12348.
  • Saini, R. K., P. S. Kadyan, J. Singh, S. Bhagwan, and D. Singh. 2019. Fabrication and photovoltaic characteristics of alizarin dye based DSSCs. Der Pharma Chemica 11 (2):43–48.
  • Sang-Aroon, W., S. Saekow, and V. Amornkitbamrung. 2012. Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A 236:(June):35–40. doi:10.1016/j.jphotochem.2012.03.014.
  • Sangiorgi, N., A. Sangiorgi, A. Dessì, L. Zani, M. Calamante, G. Reginato, A. Mordini, and A. Sanson. 2020. Improving the efficiency of thin-film fiber-shaped dye-sensitized solar cells by using organic sensitizers. Solar Energy Materials and Solar Cells 204(2020):1–8.
  • Santoro, F., A. Lami, R. Improta, J. Bloino, and V. Barone. 2008. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study. The Journal of Chemical Physics 128 (22):224311. doi:10.1063/1.2929846.
  • Shang, H., Y. Luo, X. Guo, X. Huang, X. Zhan, K. Jiang, and Q. Meng. 2010. The effect of anchoring group number on the performance of dye-sensitized solar cells. Dyes and Pigments 87 (3):249–56. doi:10.1016/j.dyepig.2010.03.034.
  • Sun, C., Y. Li, J. Han, B. Cao, H. Yin, and Y. Shi. 2019. Enhanced photoelectrical properties of alizarin-based natural dye via structure modulation. Solar Energy 185:315–23. doi:10.1016/j.solener.2019.04.078.
  • Xiao, Z., X. Jia, and L. Ding. 2017. Ternary organic solar cells offer 14% power conversion efficiency. Science Bulletin 62 (23):1562–64. doi:10.1016/j.scib.2017.11.003.
  • Xu, T., D. Kong, H. Tang, X. Qin, X. Li, A. Gurung, K. Kou, L. Chen, Q. Qiao, and W. Huang. 2020. Transparent MoS2/PEDOT composite counter electrodes for bifacial dye-sensitized solar cells. ACS Omega 5 (15):8687–96. doi:10.1021/acsomega.0c00175.
  • Zeng, K., Z. Tong, L. Ma, W.-H. Zhu, W. Wu, and Y. Xie. 2020. Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy & Environmental Science 1–40.
  • Zhang, Z.-L., L.-Y. Zou, A.-M. Ren, Y.-F. Liu, J.-K. Feng, and C. C. Sun. 2013. Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes and Pigments: An International Journal 96 (2):349–63. doi:10.1016/j.dyepig.2012.08.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.