588
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Second generation bioethanol production from hemicellulolytic hydrolyzate of apple pomace by Pichia stipitis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5574-5585 | Received 24 Jun 2020, Accepted 11 Oct 2020, Published online: 27 Oct 2020

References

  • Agbogbo, F. K., and G. Coward-Kelly. 2008. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, pichia stipitis. Biotechnology Letters 30 (9):1515–24.
  • Agbogbo, F. K., G. Coward-Kelly, M. Torry-Smith, and K. S. Wenger. 2006. Fermentation of glucose/xylose mixtures using pichia stipitis. Process Biochemistry 41 (11):2333–36.
  • Agbor, V. B., N. Cicek, R. Sparling, A. Berlin, and D. B. Levin. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances [Internet] 29(6):675–85. doi:10.1016/j.biotechadv.2011.05.005.
  • Alebiosu, F. A., A. K. Lawal, S. O. Olatope, Y. L. Suberu, K. A. Shittu, and F. A. Orji. 2015. Original research article production of xylanases from fungal isolates by solid state fermentation using sugar cane bagasse. International Journal of Current Microbiology and Applied Sciences 4 (12):323–31.
  • Bellido, C., S. Bolado, M. Coca, S. Lucas, G. González-Benito, and M. T. García-Cubero. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by pichia stipitis. Bioresource Technology [Internet] 102(23):10868–74. doi:10.1016/j.biortech.2011.08.128.
  • Chandel, A. K., O. V. Singh, L. Venkateswar Rao, G. Chandrasekhar, and M. Lakshmi Narasu. 2011. Bioconversion of novel substrate saccharum spontaneum, a weedy material, into ethanol by pichia stipitis NCIM3498. Bioresource Technology 102 (2):1709–14.
  • Choi, I. S., Y. G. Lee, S. K. Khanal, B. J. Park, and H. J. Bae. 2015. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy [Internet] 140:65–74. doi:10.1016/j.apenergy.2014.11.070.
  • Cubas-Cano, E., C. González-Fernández, M. Ballesteros, and E. Tomás-Pejó. 2019. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor. Biotechnology Progress 35:1.
  • Demiray, E., S. E. Karatay, and G. Dönmez. 2018. Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy Internet 159:988–94. https://linkinghub.elsevier.com/retrieve/pii/S0360544218312659.
  • Du Preez, J. 1994. Process parameters and environmental factors affecting D-xyylose fermentation by yeasts. Enzyme and Microbial Technology 16:944–56.
  • Evcan, E., and C. Tari. 2015. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy [Internet] 88:775–82. doi:10.1016/j.energy.2015.05.090.
  • Gabriel, L. S., R. A. Prestes, L. A. Pinheiro, A. Barison, and G. Wosiacki. 2013. Multivariate analysis of the spectroscopic profile of the sugar fraction of apple pomace. The Brazilian Archives of Biology and Technology 56 (3):439–46.
  • Granados-Arvizu, J. A., D. V. Melo-Sabogal, A. Amaro-Reyes, J. N. Gracida-Rodriguez, B. E, Garcia-Almendarez, E, Castano-Tostado, and C. Regalado-Gonzalez. 2019. Corn pericarp pretreated with dilute acid: Bioconversion of sugars in the liquid fraction to ethanol and studies on enzymatic hydrolysis of the solid fraction. Biomass Conversion and Biorefinery 1–9.
  • Gul, A., M. Irfan, M. Nadeem, and Q. Syed. 2018. Kallar grass (Leptochloa fusca L. Kunth) as a feedstock for ethanol fermentation with the aid of response surface methodology. Environmental Progress and Sustainable Energy 37 (1):569–76.
  • Günan Yücel, H., and Z. Aksu. 2015. Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods. Fuel 158:793–99.
  • Hahn-Hägerdal, B., M. Galbe, M. F. Gorwa-Grauslund, G. Lidén, and G. Zacchi. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends in Biotechnology 24 (12):549–56.
  • Hellen Sathya, D. J., A. M. Turakhia, M. A. Kumar, N. Balaji, S. Selvanaveen, G. Vinodhini, and M. Seenuvasan.  2017. Bioethanol from saccharificed lignocellulosic rich Aloe vera rinds using Saccharomyces cerevisiae MTCC 4779. Energy Sources Part A Recovery Utilization and Environmental Effects [Internet] 39(13):1347–52. doi:10.1080/15567036.2017.1328004.
  • Huang, C. F., T. H. Lin, G. L. Guo, and W. S. Hwang. 2009. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology [Internet] 100(17):3914–20. doi:10.1016/j.biortech.2009.02.064.
  • Iram, M., U. Asghar, M. Irfan, Z. Huma, S. Jamil, M. Nadeem, and Q. Syed.  2018. Production of bioethanol from sugarcane bagasse using yeast strains: A kinetic study. Energy Sources Part A Recovery Utilization and Environmental Effects [Internet] 40(3):364–72. doi:10.1080/15567036.2017.1422056.
  • Irfan, M., U. Asghar, M. Nadeem, R. Nelofer, Q. Syed, H. A. Shakir, and J. I. Qazi. 2016. Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste and Biomass Valorization 7 (6):1389–96.
  • Irfan, M., M. Nadeem, and Q. Syed. 2014. Ethanol production from agricultural wastes using Sacchromyces cervisae. Brazilian Journal of Microbiology 45 (2):457–65.
  • Jin, Q., N. Qureshi, H. Wang, and H. Huang. 2019. Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260. Fuel [Internet] 244(February):536–44. doi:10.1016/j.fuel.2019.01.177.
  • Jung, Y., I. J. Kim, H. K. Kim, and K. H. Kim. 2013. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology [Internet] 132:109–14. doi:10.1016/j.biortech.2012.12.151.
  • Jung, Y. H., and K. H. Kim. 2017. Evaluation of the main inhibitors from lignocellulose pretreatment for enzymatic hydrolysis and yeast fermentation. BioResources 12 (4):9348–56.
  • Kim, T. H., and Y. Y. Lee. 2005. Pretreatment of corn stover by soaking by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology 121:1119–31.
  • Koti, S., S. P. Govumoni, J. Gentela, and L. Venkateswar Rao. 2016. Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae. Springerplus 5 (1):1–9.
  • Lavanya, A. K., A. Sharma, S. B. Choudhary, H. K. Sharma, P. K. S. Nain, S. Singh, and L. Nain.  2019. Mesta (Hibiscus spp.)–a potential feedstock for bioethanol production. Energy Sources Part A Recovery Utilization and Environmental Effects [Internet] 1–14. doi: 10.1080/15567036.2019.1618980.
  • Leonel, L. V., L. Sene, M. A. A. da Cunha, K. C. F. Dalanhol, M. de Almeida Felipe, and G. das. 2020. Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol. Bioprocess and Biosystems Engineering [Internet] (123456789). doi:10.1007/s00449-020-02401-w.
  • Liu, L., Y. You, H. Deng, Y. Guo, and Y. Meng. 2019. Promoting hydrolysis of apple pomace by pectinase and cellulase to produce microbial oils using engineered Yarrowia lipolytica. Biomass & Bioenergy [Internet] 126(April):62–69. doi:10.1016/j.biombioe.2019.04.025.
  • López-Linares, J. C., I. Romero, C. Cara, E. Ruiz, E. Castro, and M. Moya. 2014. Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. Journal of Chemical Technology and Biotechnology 89 (1):104–10.
  • Martínez-Patiño, J. C., E. Ruiz, I. Romero, C. Cara, J. C. López-Linares, and E. Castro. 2017. Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production. Bioresource Technology 239:326–35.
  • Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31 (3):426–28.
  • Motoda, T., M. Yamaguchi, T. Tsuyama, and I. Kamei. 2019. Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. Journal of Bioscience and Bioengineering [Internet] 127(1):66–72. doi:10.1016/j.jbiosc.2018.06.017.
  • Nigam, J. N. 2001. Ethanol production from wheat straw hemicellulose hydrolysate by pichia stipitis. Journal of Biotechnology 87 (1):17–27.
  • Öz, M. H., İ. Büyük, A. E. Akpinar. C. Yüksel-Özmen, K. Kazan, H. Vurgun, A. Bacaksiz, K. Çukadar, H. M. Ünlü and A. Ergül. 2020. Eastern Anatolian apples with a unique population structure are genetically different from anatolian apples. Gene 723. 144149.
  • Palmqvist, E., and B. Hahn-Hägerdal. 2000. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology 74 (1):25–33.
  • Pathania, S., N. Sharma, and S. Handa. 2017. Immobilization of co-culture of saccharomyces cerevisiae and scheffersomyces stipitis in sodium alginate for bioethanol production using hydrolysate of apple pomace under separate hydrolysis and fermentation. Biocatalysis and Biotransformation 35 (6):450–59.
  • Rees, E. M. R., and G. G. Stewart. 1997. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts. Journal of the Institute of Brewing 103 (5):287–91.
  • Roca, C., and L. Olsson. 2003. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 60 (5):560–63.
  • Saini, J. K., R. Saini, and L. Tewari. 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. Biotech [Internet] 5(4):337–53. doi:10.1007/s13205-014-0246-5.
  • Shanavas, S., G. Padmaja, S. N. Moorthy, M. S. Sajeev, and J. T. Sheriff. 2011. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass & Bioenergy [Internet] 35(2):901–09. doi:10.1016/j.biombioe.2010.11.004.
  • Singh, A., S. Bajar, and N. R. Bishnoi. 2014. Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel [Internet] 116:699–702. doi:10.1016/j.fuel.2013.08.072.
  • Solarte-Toro, J. C., J. M. Romero-García, J. C. Martínez-Patiño, E. Ruiz-Ramos, E. Castro-Galiano, and C. A. Cardona-Alzate. 2019. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renewable and Sustainable Energy Reviews [Internet] 107(February):587–601. doi:10.1016/j.rser.2019.02.024.
  • Ucuncu, C., C. Tari, H. Demir, A. O. Buyukkileci, and B. Ozen. 2013. Dilute-acid hydrolysis of apple, orange, apricot and peach pomaces as potential candidates for bioethanol production. Journal of Biobased Materials and Bioenergy 7 (3):376–89.
  • van Zyl, C., B. A. Prior, and J. C. Du Preez. 1991. Acetic acid inhibition of d-xylose fermentation by Pichia stipitis. Enzyme and Microbial Technology 13 (1):82–86.
  • Vendruscolo, F., P. M. Albuquerque, F. Streit, E. Esposito, and J. L. Ninow. 2008. Apple pomace: A versatile substrate for biotechnological applications. Critical Reviews in Biotechnology 28 (1):1–12.
  • Vongvisith, B., Z. Wudi, Y. Fang, W. Kai, L. Ming, J. Xiyan, W. Changmei, Z. Xingling, L. Jing and Y. Hong. 2018. Agricultural waste resources and biogas energy potential in rural areas of Lao PDR. Energy Sources Part A Recovery Utilization and Environmental Effects [Internet] 40(19):2334–41. doi:10.1080/15567036.2018.1488017.
  • Wistara, N. J., R. Pelawi, and W. Fatriasari. 2016. The effect of lignin content and freeness of pulp on the bioethanol productivity of jabon wood. Waste and Biomass Valorization 7 (5):1141–46.
  • Yamaoka, C., O. Kurita, and T. Kubo. 2014. Improved ethanol tolerance of saccharomyces cerevisiae in mixed cultures with kluyveromyces lactis on high-sugar fermentation. Microbiological Research [Internet] 169(12):907–14. doi:10.1016/j.micres.2014.04.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.