285
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a truncated ellipsoidal reflector-based metal halide lamp solar simulator for characterization of photovoltaic cells

, , , , ORCID Icon & ORCID Icon
Pages 2554-2568 | Received 29 Mar 2019, Accepted 18 Oct 2020, Published online: 11 Nov 2020

References

  • Atkin, P., and M. M. Farid. 2015. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy 114:217–28. doi:10.1016/j.solener.2015.01.037.
  • Bencherif, M., and T. Benouaz. 2018. Parameter extraction of solar panels using the graphical method. International Journal of Ambient Energy 41 (8):1–18.
  • Bliss, M., T. R. Betts, and R. Gottschalg. 2009. An LED-based photovoltaic measurement system with variable spectrum and flash speed. Solar Energy Materials and Solar Cells 93:825–30. doi:10.1016/j.solmat.2008.09.056.
  • Boulaid, M., A. Tihane, R. Oaddi, A. Elfanaoui, K. Bouabid, and A. Ihlal. 2017. Comparative performance assessment of mono crystalline, multi crystalline, and amorphous silicon grid-connected photovoltaic systems under actual climatic conditions of Agadir, Morocco. International Journal of Green Energy 14:1182–91. doi:10.1080/15435075.2017.1381611.
  • Codd, D., A. Carlson, J. Rees, and A. Slocum 2010a. A low cost high flux solar simulator.
  • Codd, D. S., A. Carlson, J. Rees, and A. H. Slocum. 2010b. A low cost high flux solar simulator. Solar Energy 84:2202–12. doi:10.1016/j.solener.2010.08.007.
  • Cornaro, C., L. Renzi, M. Pierro, A. DI Carlo, and A. Guglielmotti. 2018. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions. Energies 11:155.
  • Dong, X., Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu. 2015. Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps. Solar Energy 115:613–20. doi:10.1016/j.solener.2015.03.017.
  • Ebrahimi, M., M. Rahimi, and A. Rahimi. 2015. An experimental study on using natural vaporization for cooling of a photovoltaic solar cell. International Communications in Heat and Mass Transfer 65:22–30. doi:10.1016/j.icheatmasstransfer.2015.04.002.
  • Ekman, B. M., G. Brooks, and M. Akbar Rhamdhani. 2015. Development of high flux solar simulators for solar thermal research. Solar Energy Materials and Solar Cells 141:436–46. doi:10.1016/j.solmat.2015.06.016.
  • Garg, H. P., A. R. Shukla, I. Madhuri, R. C. Agnihotri, and S. Chakravertty. 1985. Development of a simple low-cost solar simulator for indoor collector testing. Applied Energy 21:43–54. doi:10.1016/0306-2619(85)90073-X.
  • Hasan, A., S. J. Mccormack, M. J. Huang, and B. Norton. 2010. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy 84:1601–12. doi:10.1016/j.solener.2010.06.010.
  • Hedayatizadeh, M., Y. Ajabshirchi, F. Sarhaddi, A. Safavinejad, S. Farahat, and H. Chaji. 2012. Thermal and electrical assessment of an integrated solar photovoltaic thermal (PV/T) water collector equipped with a compound parabolic concentrator (CPC). International Journal of Green Energy 10.
  • Hong, E., and N. Narendran. 2004. A method for projecting useful life of LED lighting systems. Proc. SPIE 5187, Third International Conference on Solid State Lighting, San Diego, CA, USA, January 26. https://doi.org/10.1117/12.509682
  • Hu, J., L. Q. Yang, and M. Shin. 2008. Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes. Journal of Physics D: Applied Physics 41:035107. doi:10.1088/0022-3727/41/3/035107.
  • IMF. 2018. GDP per Capita [Online]. International Monetary Fund. Accessed May 09, 2018 http://www.imf.org/external/datamapper/NGDPDPC@WEO/OEMDC/ADVEC/WEOWORLD.
  • Irwan, Y. M., W. Z. Leow, M. Irwanto, M. Fareq, A. R. Amelia, N. Gomesh, and I. Safwati. 2015. Indoor test performance of PV panel through water cooling method. Energy Procedia 79:604–11. doi:10.1016/j.egypro.2015.11.540.
  • Jang, S. H., and M. W. Shin. 2010. Fabrication and thermal optimization of LED solar cell simulator. Current Applied Physics 10:S537–S539. doi:10.1016/j.cap.2010.02.035.
  • Jin, J., Y. Hao, and H. Jin. 2019. A universal solar simulator for focused and quasi-collimated beams. Applied Energy 235:1266–76. doi:10.1016/j.apenergy.2018.09.223.
  • Kohraku, S., and K. Kurokawa 2003. New methods for solar cells measurement by LED solar simulator. 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings of, Osaka, Japan, May 11–18, vol. 2, 1977–80
  • Kolberg, D., F. Schubert, K. Klameth, and D. M. Spinner. 2012. Homogeneity and lifetime performance of a tunable close match LED solar simulator. Energy Procedia 27:306–11. doi:10.1016/j.egypro.2012.07.068.
  • Kumar Sahu, B. 2015. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renewable and Sustainable Energy Reviews 43:621–34.
  • Leary, G., G. Switzer, G. Kuntz, and T. Kaiser. 2016. Comparison of xenon lamp-based and led-based solar simulators. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 3062–67. doi:10.1109/PVSC.2016.7750227.
  • Lin, S. H., and E. M. Sparrow. 1965. Radiant Interchange Among Curved Specularly Reflecting Surfaces—Application to Cylindrical and Conical Cavities. Journal of Heat Transfer 87:299–307. doi:10.1115/1.3689093.
  • López-Fraguas, E., J. M. Sánchez-Pena, and R. Vergaz. 2019. A low-cost LED-based solar simulator. IEEE Transactions on Instrumentation and Measurement 68 (12):4913–23. doi:10.1109/TIM.2019.2899513.
  • Martínez-Manuel, L., M. I. Peña-Cruz, M. Villa-Medina, C. Ojeda-Bernal, M. Prado-Zermeño, I. Prado-Zermeño, C. A. Pineda-Arellano, J. G. Carrillo, I. Salgado-Tránsito, and F. Martell-Chavez. 2018. A 17.5 kWel high flux solar simulator with controllable flux-spot capabilities: Design and validation study. Solar Energy 170:807–19. doi:10.1016/j.solener.2018.05.088.
  • Meng, Q., Y. Wang, and L. Zhang. 2011. Irradiance characteristics and optimization design of a large-scale solar simulator. Solar Energy 85:1758–67. doi:10.1016/j.solener.2011.04.014.
  • Namin, A., C. Jivacate, D. Chenvidhya, K. Kirtikara, and J. Thongpron. 2013. Determination of solar cell electrical parameters and resistances using color and white LED-based solar simulators with high amplitude pulse input voltages. Renewable Energy 54:131–37. doi:10.1016/j.renene.2012.08.046.
  • Nebbali, D., R. Nebbali, and A. Ouibrahim. 2018. Improving photovoltaic panel performance via an autonomous air cooling system – Experimental and numerical simulations. International Journal of Ambient Energy 41 (12):1–17.
  • Nuryadin, B. W., A. Y. Nuryantini, and M. A. Ramdhani. 2018. A solar simulator using a LCD projector for students’ laboratory. Physics Education 53:055021. doi:10.1088/1361-6552/aad4c2.
  • Okuhara, Y., T. Kuroyama, T. Tsutsui, K. Noritake, and T. Aoshima. 2015. A solar simulator for the measurement of heat collection efficiency of parabolic trough receivers. Energy Procedia 69:1911–20. doi:10.1016/j.egypro.2015.03.185.
  • Parthasarathy, S., P. Neelamegam, and P. Thilakan. 2017. Power performance characterization of multi-crystalline silicon solar cells and its module at outdoor exposure. International Journal of Green Energy 14:9–14. doi:10.1080/15435075.2014.952417.
  • Parupudi, R. V., H. Singh, and M. Kolokotroni. 2019. Sun simulator for indoor performance assessment of solar photovoltaic cells. Energy Procedia 161:376–84. doi:10.1016/j.egypro.2019.02.102.
  • Petrasch, J., P. Coray, A. Meier, M. Brack, P. Häberling, and D. Wuillemin. 2007a. A novel 50 kW11,000 suns high-flux solar simulator based on an array of xenon arc lamps. Solar Energy
  • Petrasch, J. R., P. Coray, A. Meier, M. Brack, P. HÄberling, D. Wuillemin, and A. Steinfeld. 2007b. A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps. Journal of Solar Energy Engineering 129:405. doi:10.1115/1.2769701.
  • Rathore, N., N. L. Panwar, F. Yettou, and A. Gama. 2019. A comprehensive review of different types of solar photovoltaic cells and their applications. International Journal of Ambient Energy 1–18. doi:10.1080/01430750.2019.1592774.
  • Roba, J. P., and N. P. Siegel. 2017. The design of metal halide-based high flux solar simulators: Optical model development and empirical validation. Solar Energy 157:818–26. doi:10.1016/j.solener.2017.08.072.
  • Siegel, N. P., and J. P. Roba. 2018. Design, modeling, and characterization of a 10 kWe metal halide high flux solar simulator. Journal of Solar Energy Engineering 140:045001–045001–7. doi:10.1115/1.4039658.
  • Solargis. 2017. Photovoltaic electricity potential [Online]. Solargis. Accessed July 11, 2018. https://solargis.com/maps-and-gis-data/download/world
  • Steinfeld, A. 1991. Exchange factor between two spheres placed at the foci of a specularly reflecting ellipsoidal cavity. International Communications in Heat and Mass Transfer 18:19–26. doi:10.1016/0735-1933(91)90004-N.
  • Tawfik, M., X. Tonnellier, and C. Sansom. 2018. Light source selection for a solar simulator for thermal applications: A review. Renewable and Sustainable Energy Reviews 90:802–13. doi:10.1016/j.rser.2018.03.059.
  • Wang, W., L. Aichmayer, B. Laumert, and T. Fransson. 2014. Design and validation of a low-cost high-flux solar simulator using fresnel lens concentrators. Energy Procedia 49:2221–30. doi:10.1016/j.egypro.2014.03.235.
  • Xiao, J., X. Wei, R. N. Gilaber, Y. Zhang, and Z. Li. 2018. Design and characterization of a high-flux non-coaxial concentrating solar simulator. Applied Thermal Engineering 145:201–11. doi:10.1016/j.applthermaleng.2018.09.050.
  • Zhang, C., Y. Zhang, H. Guo, Q. Jiang, P. Dong, and C. Zhang. 2018. Efficient planar hybrid n-Si/PEDOT:PSS solar cells with power conversion efficiency up to 13.31% achieved by controlling the SiOx Interlayer. Energies 11:1397. doi:10.3390/EN11061397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.