425
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Environmental assessment of transparent conductive oxide-free efficient flexible organo-lead halide perovskite solar cell

ORCID Icon, & ORCID Icon
Pages 2544-2553 | Received 10 Jul 2020, Accepted 16 Oct 2020, Published online: 09 Nov 2020

References

  • CDC. 2018. Accessed September 17, 2018. https://www.cdc.gov/niosh/npg/npgd0075.html
  • Celik, I., Z. Song, A. J. Cimaroli, Y. Yan, M. J. Heben, and D. Apul. 2015. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Solar Energy Materials and Solar Cells 156:157–69. doi:10.1016/j.solmat.2016.04.037.
  • Chander, S., and M. S. Dhaka. 2017a. Optimization of substrates and physical properties of CdS thin films for perovskite solar cell applications. Journal of Materials Science: Materials in Electronics 28:6852–59. doi:10.1007/s10854-017-6384-x.
  • Chander, S., and M. S. Dhaka. 2017b. Enhanced structural, electrical and optical properties of evaporated CdZnTe thin films deposited on different substrates. Materials Letters 186:45–48. doi:10.1016/j.matlet.2016.09.093.
  • Chander, S., A. Purohit, S. L. Patel, and M. S. Dhaka. 2017. Effect of substrates on structural, optical, electrical and morphological properties of evaporated polycrystalline CdZnTe thin films. Phys E Low-Dimensional Syst Nanostructures 89:29–32. doi:10.1016/j.physe.2017.02.002.
  • Chilvery, A., S. Das, P. Guggilla, C. Brantley, and A. Sunda-Meya. 2016. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials 17:650–58. doi:10.1080/14686996.2016.1226120.
  • Collier, J., and R. Ellingson. 2015. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems : A systematic review and … PhD Dissertation View project. Renewable and Sustainable Energy Reviews 47:133–41. doi:10.1016/j.rser.2015.02.057.
  • De Wolf, S., J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif 2014. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. The Journal of Physical Chemistry Letters 5:1035–39. doi:10.1021/jz500279b.
  • Department of Energy. 2018. Energy department releases new critical materials strategy | Department of Energy. Accessed May 1, 2018. https://www.energy.gov/articles/energy-department-releases-new-critical-materials-strategy
  • Dou, B., E. M. Miller, J. A. Christians, E. M. Sanehira, T. R. Klein, F. S. Barnes, S. E. Shaheen, S. M. Garner, S. Ghosh, A. Mallick, et al. 2017. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. The Journal of Physical Chemistry Letters 8:4960–66. doi:10.1021/acs.jpclett.7b02128.
  • Espinosa, N., L. Serrano-Luján, A. Urbina, and F. C. Krebs. 2015. Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. Solar Energy Materials and Solar Cells 137:303–10. doi:10.1016/j.solmat.2015.02.013.
  • Feng, J. 2014. Mechanical properties of hybrid organic-inorganic CH3NH 3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Materials 2:081801. doi:10.1063/1.4885256.
  • Fraunhofer Institute for Solar Energy Systems I, GmbH with support of P. Photovoltaics Report 2019. Accessed May 11, 2020. www.ise.fraunhofer.de
  • Frischknecht, R., and F. W. René Itten. 2015. Life Cycle Assessment of Future Photovoltaic Electricity Production from Residential-scale Systems Operated in Europe. United States: N. p., 2015. Web. doi:10.2172/1561524. https://www.osti.gov/biblio/1561524
  • García-Valverde, R., J. A. Cherni, and A. Urbina. 2010. Life cycle analysis of organic photovoltaic technologies. Progress in Photovoltaics: Research and Applications 18:535–38. doi:10.1002/pip.967.
  • Gbadamosi, S. L., and N. I. Nwulu. 2020. Reliability assessment of composite generation and transmission expansion planning incorporating renewable energy sources. Journal of Renewable and Sustainable Energy 12:026301. doi:10.1063/1.5119244.
  • Global Solar Atlas. Global Solar Atlas. Washington DC 2018:1. Accessed June 29, 2018. http://globalsolaratlas.info/
  • Guinée, J. B., M. Gorrée, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, et al. 2001. Life cycle assessment An operational guide to the ISO standards. Netherlands: Kluwer Acad Publ Dordrecht. http://www.envirotrain.co.uk/wp-content/uploads/2010/09/C5-LCA-Report-Pt1.pdf
  • Heo, J. H., S. H. Im, J. H. Noh, T. N. Mandal, C.-S.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, et al. 2013. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 7:486–91. doi:10.1038/nphoton.2013.80.
  • Hu, Z., G. Kapil, H. Shimazaki, S. S. Pandey, T. Ma, and S. Hayase. 2017. Transparent conductive oxide layer and hole selective layer free back-contacted hybrid perovskite solar cell. The Journal of Physical Chemistry C 121:4214–19. doi:10.1021/acs.jpcc.7b00760.
  • Im, J. H., C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park. 2011. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–93. doi:10.1039/c1nr10867k.
  • ISO 14040:2006. Environmental management – Life cycle assessment – Principles and framework n.d. Accessed March 29, 2018. https://www.iso.org/standard/37456.html
  • Kim, H. S., C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, et al. 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2:591. doi:10.1038/srep00591.
  • Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131:6050–51. doi:10.1021/ja809598r.
  • Li, Y., L. Meng, Y. Yang, G. Xu, Z. Hong, Q. Chen, J. You, G. Li, Y. Yang, Y. Li, et al. 2016. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications 7:10214. doi:10.1038/ncomms10214.
  • Lin, S., B. Yang, X. Qiu, J. Yan, J. Shi, Y. Yuan, et al. 2018. Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2as electron transport material. Organic Electronics: Physics, Materials, Applications 53:235–41. doi:10.1016/j.orgel.2017.12.002. https://www.x-mol.com/paper/468900
  • Louwet, F., L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, et al. 2003. PEDOT/PSS: Synthesis, characterization, properties and applications. In Synth. Met., Vol., Vols. 135–136, 115–17. Elsevier. doi:10.1016/S0379-6779(02)00518-0. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14768981
  • Michael, V. 2012. Fabrication of OLED on FTO and ITO coated Substrates A thesis submitted to De Montfort University in partial fulfillment of the requirements for the award of the Degree of Masters of Science (Msc) in Microelectronics and Nanotechnology.
  • Minami, T. 2005. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology 20:S35–44. doi:10.1088/0268-1242/20/4/004.
  • NREL. 2019. Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. Best Res Effic Chart | Photovolt Res | NREL Accessed December 28, 2019. https://www.nrel.gov/pv/cell-efficiency.html.https://www.nrel.gov/pv/cell-efficiency.html (accessed December 28, 2019).
  • Peng, J., L. Lu, and H. Yang. 2013. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews 19:255–74. doi:10.1016/j.rser.2012.11.035.
  • Popoola, I. K., M. A. Gondal, and T. F. Qahtan. 2018. Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability. Renewable and Sustainable Energy Reviews 82:3127–51. doi:10.1016/j.rser.2017.10.028.
  • Purohit, A., S. Chander, S. L. Patel, K. J. Rangra, and M. S. Dhaka. 2017. Substrate dependent physical properties of evaporated CdO thin films for optoelectronic applications. Journal Physics Letters, Section A: General, Atomic and Solid State Physics 381:1910–14. doi:10.1016/j.physleta.2017.03.049.
  • Sarialtin, H., R. Geyer, and C. Zafer. 2020. Life cycle assessment of hole transport free planar-mesoscopic perovskite solar cells. Journal of Renewable and Sustainable Energy 12:023502. doi:10.1063/1.5129784.
  • Serrano-Lujan, L., N. Espinosa, T. T. Larsen-Olsen, J. Abad, A. Urbina, and F. C. Krebs. 2015. Tin- and lead-based perovskite solar cells under scrutiny: An environmental perspective. Advanced Energy Materials 5:1–5. doi:10.1002/aenm.201501119.
  • Sigma-Aldrich. 2018. Accessed May 10, 2018. https://www.sigmaaldrich.com/catalog/product/aldrich/793833?lang=en&region=US
  • Sun, Y., Y. C. Han, and J. G. Liu. 2013. Controlling PCBM aggregation in P3HT/PCBM film by a selective solvent vapor annealing. Chinese Science Bulletin 58:2767–74. doi:10.1007/s11434-013-5944-6.
  • Thompson, A. B., and D. W. Woods. 1955. Density of amorphous polyethylene terephthalate. Nature 176:78–79. doi:10.1038/176078b0.
  • Ueda, M., N. Imai, S. Yoshida, H. Yasuda, T. Fukuyama, and I. Ryu. 2017. Scalable flow synthesis of [6,6]-phenyl-C 61 -butyric Acid Methyl Ester (PCBM) using a Flow Photoreactor with a Sodium Lamp. European Journal of Organic Chemistry 2017:6483–85. doi:10.1002/ejoc.201700745.
  • Wang, Q., H. Chen, G. Liu, and L. Wang. 2015. Control of organic–inorganic halide perovskites in solid-state solar cells: A perspective. Science Bulletin 60:405–18. doi:10.1007/s11434-015-0734-y.
  • Xie, X., G. Liu, C. Xu, S. Li, Z. Liu, and E.-C. Lee. 2017. Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells. Organic Electronics 44:120–25. doi:10.1016/j.orgel.2017.02.011.
  • Yin, W. J., J. H. Yang, J. Kang, Y. Yan, and S. H. Wei. 2015. Halide perovskite materials for solar cells: A theoretical review. Journal of Materials Chemistry A 3:8926–42. doi:10.1039/c4ta05033a.
  • Zhao, X., H. Hao, J. Dong, F. Cheng, J. Hao, J. Xing, H. Liu, et al. 2017. Fast extraction of electron across the interface of nanowire CH 3 NH 3 PbI 3/ZnO on flexible PET substrate. Materials Letters 197:139–42. doi:10.1016/j.matlet.2017.03.122. https://www.sciencedirect.com/science/article/pii/S0167577X17304639?casa_token=XyS797EsMGYAAAAA:QNoRVHCQ-7KVl1pjMHU8HWjLsXbDdgi11CoGn5TtTdvsvtKAd2GnSM2P3e8b2_oR-5W6gp1w9Q

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.