293
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A hybrid global maximum power point tracking of partially shaded PV system under load variation by using adaptive salp swarm and differential evolution – perturb & observe technique

ORCID Icon &
Pages 2471-2495 | Received 09 Jul 2020, Accepted 07 Nov 2020, Published online: 08 Dec 2020

References

  • Aygül, K., M. Cikan, T. Demirdelen, and M. Tumay. 2019. Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects :1–19. doi:10.1080/15567036.2019.1677818.
  • Ayop, R., and C. W. Tan. 2018. Design of boost converter based on maximum power point resistance for photovoltaic applications. Solar Energy 160:322–35. doi:10.1016/j.solener.2017.12.016.
  • Balat, M. 2006. Solar technological progress and use of solar energy in the world. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 28 (10):979–94. doi:10.1080/009083190953409.
  • Cubas, J., S. Pindado, and C. D. Manuel. 2014. Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the lambert w-function. Energies 7 (7):1–18. doi:10.3390/en7074098.
  • Dadj, A., N. Djongyang, J. D. Kana, and R. Tchinda. 2016. Maximum power point tracking methods for photovoltaic systems operating under partially shaded or rapidly variable insolation conditions: A review paper. International Journal of Sustainable Engineering 9 (4):224–39. doi:10.1080/19397038.2016.1149525.
  • Elgendy, M. A., B. Zahawi, and D. J. Atkinson. 2013. Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Transactions on Sustainable Energy 4 (1):108–17. doi:10.1109/TSTE.2012.2202698.
  • Gandoman, F. H., S. H. Abdel Aleem, N. Omar, A. Ahmadi, and F. Q. Alenezi. 2018. Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects. Renewable Energy 123:793–805. doi:10.1016/j.renene.2018.02.102.
  • Ishaque, K., Z. Salam, M. Amjad, and S. Mekhilef. 2012. An improved particle swarm optimization (pso)based mppt for pv with reduced steady-state oscillation. IEEE Transactions on Power Electronics 27 (8):3627–38. doi:10.1109/TPEL.2012.2185713.
  • Izadbakhsh, M., A. Rezvani, and M. Gandomkar. 2014. Improvement of microgrid dynamic performance under fault circumstances using ANFIS for fast varying solar radiation and fuzzy logic controller for wind system. Archives of Electrical Engineering 63 (4):551–78. doi:10.2478/aee-2014-0038.
  • Izadbakhsh, M., A. Rezvani, and M. Gandomkar. 2015. Dynamic response improvement of hybrid system by implementing ANN-GA for fast variation of photovoltaic irradiation and FLC for wind turbine. Archives of Electrical Engineering 64 (2):291–314. doi:10.1515/aee-2015-0024.
  • Koutroulis, E., and F. Blaabjerg. 2015. Overview of maximum power point tracking techniques for photovoltaic energy production systems. Electric Power Components and Systems 43 (12):1329–51. doi:10.1080/15325008.2015.1030517.
  • Krishnan, S., and K. Sathiyasekar. 2020. A novel salp swarm optimization MPP tracking algorithm for the solar photovoltaic systems under partial shading conditions. Journal of Circuits, Systems and Computers :2050017. doi:10.1142/S0218126620500176.
  • Kumar, N., I. Hussain, B. Singh, and B. K. Panigrahi. 2017. MPPT in dynamic condition of partially shaded PV system by using WODE technique. IEEE Transactions on Sustainable Energy 8 (3):1204–14. doi:10.1109/TSTE.2017.2669525.
  • Li, X., Q. Wang, H. Wen, and W. Xiao. 2019. Comprehensive studies on operational principles for maximum power point tracking in photovoltaic systems. IEEE Access 7:121407–20. doi:10.1109/ACCESS.2019.2937100.
  • Liu, F., S. Duan, F. Liu, B. Liu, and Y. Kang. 2008. A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics 55 (7):2622–28. doi:10.1109/TIE.2008.920550.
  • Ma, B., H. Ni, X. Zhu, and R. Zhao. 2019. A comprehensive improved salp swarm algorithm on redundant container deployment problem. IEEE Access 7:136452–70. doi:10.1109/ACCESS.2019.2933265.
  • Mäki, A., and S. Valkealahti. 2012. Power losses in long string and parallel-connected short strings of series-connected silicon- based photovoltaic modules due to partial shading conditions. IEEE Transactions on Energy Conversion 27 (1):173–83. doi:10.1109/TEC.2011.2175928.
  • Manganiello, P., M. Ricco, G. Petrone, E. Monmasson, and G. Spagnuolo. 2014. Optimization of perturbative PV MPPT methods through online system identification. IEEE Transactions on Industrial Electronics 61 (12):6812–21. doi:10.1109/TIE.2014.2317143.
  • Mathi, D. K., and C. H. Ramulu. 2019. Enhanced leader adaptive velocity particle swarm optimization based global maximum power point tracking technique for a pv string under partially shaded conditions. IET Renewable Power Generation (2):1–8. doi:10.1049/iet-rpg.2019.0575.
  • Mathi, D. K., and R. Chinthamalla. 2020. Global maximum power point tracking technique based on adaptive salp swarm algorithm and P&O techniques for a PV string under partially shaded conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects :1–18. doi:10.1080/15567036.2020.1755391.
  • Mirjalili, S., A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili. 2017. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software 114:163–91. doi:10.1016/j.advengsoft.2017.07.002.
  • Miveh, M. R., M. F. Rahmat, M. W. Mustafa, A. A. Ghadimi, and A. Rezvani. 2016. An improved control strategy for a four-leg grid- forming power converter under unbalanced load conditions. Advances in Power Electronics 2016:1–14. doi:10.1155/2016/9123747.
  • Mohamed, M. A., A. A. Z. Diab, and H. Rezk. 2019. Partial shading mitigation of PV systems via different meta-heuristic techniques. Renewable Energy 130:1159–75. doi:10.1016/j.renene.2018.08.077.
  • Mohanty, S., B. Subudhi, and P. K. Ray. 2016. A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Transactions on Sustainable Energy 7 (1):181–88. doi:10.1109/TSTE.2015.2482120.
  • Mohanty, S., B. Subudhi, and P. K. Ray. 2017. A grey wolf-assisted perturb observe mppt algorithm for a PV system. IEEE Transactions on Energy Conversion 32 (1):340–47. doi:10.1109/TEC.2016.2633722.
  • Mousa, A., S. A. Aleem, and A. Ibrahim. 2016. Mathematical analysis of maximum power points and currents based maximum power point tracking in solar photovoltaic system: A solar powered water pump application. International Review of Electrical Engineering (IREE) 11:1. doi:10.15866/iree.v11i1.8137.
  • Pandey, A., N. Dasgupta, and A. K. Mukerjee. 2008. High-performance algorithms for drift avoidance and fast tracking in solar MPPT System. IEEE Transactions on Energy Conversion 23 (2):681–89. doi:10.1109/TEC.2007.914201.
  • Patel, N., A. Kumar, N. Gupta, and B. C. Babu. 2020. Experimental investigations on voltage sourced inverter interfaced photovoltaic based distributed generation system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects :1–23. doi:10.1080/15567036.2020.1781302.
  • Patel, N., N. Gupta, and B. C. Babu. 2019. Design, development, and implementation of grid-connected solar photovoltaic power conversion system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects :1–20. doi:10.1080/15567036.2019.1668506.
  • Rezvani, A., A. Esmaeily, H. Etaati, and M. Mohammadinodoushan. 2019. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode. Frontiers in Energy 13 (1):131–48. doi:10.1007/s11708-017-0446-x.
  • Rezvani, A., and M. Gandomkar. 2017. Simulation and control of intelligent photovoltaic system using new hybrid fuzzy-neural method. Neural Computing & Applications 28 (9):2501–18. doi:10.1007/s00521-016-2210-2.
  • Selvamuthukumaran, R., Y. S. Kumar, and R. Gupta. 2016. Global maximum power point tracking of multiple pv modules under partially shaded condition using stepped comparison search. Electric Power Components and Systems 44 (12):1384–95. doi:10.1080/15325008.2016.1157106.
  • Seyedmahmoudian, M., R. Rahmani, S. Mekhilef, A. Maung Than Oo,  A. Stojcevski , T. K. Soon, and A. S. Ghandhari. 2015. Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. IEEE Transactions on Sustainable Energy 6 (3):850–62. doi:10.1109/TSTE.2015.2413359.
  • Shi, J., W. Zhang, Y. Zhang, F. Xue, and T. Yang. 2015. MPPT for PV systems based on a dormant PSO algorithm. Electric Power Systems Research 123:100–07. doi:10.1016/j.epsr.2015.02.001.
  • Shi, J. Y., D. Y. Zhang, L. T. Ling, F. Xue , Ya-Jing Li , Zi-Jian Qin, and T. Yang. 2018. Dual-algorithm maximum power point tracking control method for photovoltaic systems based on grey wolf optimization and golden-section optimization. Journal of Power Electronics 18 (3):841–52. doi:10.6113/JPE.2018.18.3.841.
  • Soon, T. K., and S. Mekhilef. 2015. A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance. IEEE Transactions on Industrial Informatics 11 (1):176–86. doi:10.1109/TII.2014.2378231.
  • Sridhar, R., S. Jeevananthan, and P. Vishnuram. 2017. Particle swarm optimisation maximum power-tracking approach based on irradiation and temperature measurements for a partially shaded photovoltaic system. International Journal of Ambient Energy 38 (7):685–93. doi:10.1080/01430750.2016.1181570.
  • Subudhi, B., and R. Pradhan. 2013. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy 4 (1):89–98. doi:10.1109/TSTE.2012.2202294.
  • Sundareswaran, K., V. V. kumar, and S. Palani. 2015. Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renewable Energy 75:308–17. doi:10.1016/j.renene.2014.09.044.
  • Sweelem, E. A., F. H. Fahmy, M. M. A. E. Aziz, P. Zacharias, and A. Mahmoudi. 1999. Increased efficiency in the conversion of solar energy to electric power. Energy Sources 21 (5):367–77. doi:10.1080/00908319950014696.
  • Tey, K. S., S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. T. Oo, and A. Stojcevski. 2018. Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation. IEEE Transactions on Industrial Informatics 14 (10):4322–33. doi:10.1109/TII.2018.2793210.
  • Vafaei, S., M. Gandomkar, A. Rezvani, and M. Izadbakhsh. 2015. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances. Frontiers in Energy 9 (3):322–34. doi:10.1007/s11708-015-0362-x.
  • Wu, J., R. Nan, and L. Chen. 2019. Improved salp swarm algorithm based on weight factor and adaptive mutation. Journal of Experimental and Theoretical Artificial Intelligence 31 (3):493–515. doi:10.1080/0952813X.2019.1572659.
  • Yang, B., L. Zhong, X. Zhang, H. Shu, T. Yu, H. Li, L. Jiang, and L. Sun. 2019. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. Journal of Cleaner Production 215:1203–22. doi:10.1016/j.jclepro.2019.01.150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.