126
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Thermo-hydraulic performance and entropy generation of biologically synthesized silver/water-ethylene glycol nano-fluid flow inside a rifled tube using two-phase mixture model

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4463-4480 | Received 22 Sep 2020, Accepted 06 Nov 2020, Published online: 01 Dec 2020

References

  • Akhavan-Behabadi, M. A., M. Shahidi, and M. R. Aligoodarz. 2015. An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube. International Communications in Heat and Mass Transfer 63:62–72. doi:10.1016/j.icheatmasstransfer.2015.02.013.
  • Al Kumait, A. A. R., T. K. Ibrahim, and M. A. Abdullah. 2019. Experimental and numerical study of forced convection heat transfer in different internally ribbed tubes configuration using TiO2 nanofluid. Heat Transfer Asian Research 48:1778–804. doi:10.1002/htj.21457.
  • Alizadeh, R., N. Karimi, A. Mehdizadeh, and A. Nourbakhsh. 2019. Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform impinging flows in porous media. Journal of Thermal Analysis and Calorimetry 138:659–78.
  • Alizadeh, R., J. M. Najm Abad, A. Fattahi, E. Alhajri, and N. Karimi. 2020. Application of machine learning to investigation of heat and mass transfer over a cylinder surrounded by porous media-the radial basic function network. Journal of Energy Resources Technology 142:112109. doi:10.1115/1.4047402.
  • Al-Rashed, A. A. A. A., A. Shahsavar, O. Rasooli, M. A. Moghimi, A. Karimipour, and M. D. Tran. 2019. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink. International Communications in Heat and Mass Transfer 104:118–26. doi:10.1016/j.icheatmasstransfer.2019.03.007.
  • Cheng, L., and T. Chen. 2007. Study of vapor liquid two-phase frictional pressure drop in a vertical heated spirally internally ribbed tube. Chemical Engineering Science 62:783–92. doi:10.1016/j.ces.2006.10.016.
  • Darzi, A. A. R., M. Farhadi, and K. Sedighi. 2014. Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube. Experimental Thermal and Fluid Science 57:188–99. doi:10.1016/j.expthermflusci.2014.04.024.
  • Farshad, S. A., and M. Sheikholeslami. 2019. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renewable Energy 141:246–58. doi:10.1016/j.renene.2019.04.007.
  • Gomari, S. R., R. Alizadeh, A. Alizadeh, and N. Karimi. 2019. Generation of entropy during forced convection of heat in nanofluid stagnation-point flows over a cylinder embedded in porous media. Numerical Heat Transfer, Part A: Applications 75:647–73. doi:10.1080/10407782.2019.1608774.
  • Grądziel, S., and K. Majewski. 2019. Experimental determination of the friction factor in a tube with internal helical ribs. Energies 12:257. doi:10.3390/en12020257.
  • Javed, S., H. M. Ali, H. Babar, M. S. Khan, M. M. Janjua, and M. A. Bashir. 2020. Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review. Physica A: Statistical Mechanics and Its Applications 538:122783. doi:10.1016/j.physa.2019.122783.
  • Kakaç, S. 2016. A. Pramuanjaroenkij, Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids–A state-of-the-art review. International Journal of Thermal Sciences 100:75–97. doi:10.1016/j.ijthermalsci.2015.09.021.
  • Khdher, A. B. M., N. A. Ch., S. R. Mamat, W. Azmi, and W. Hamzah. 2015. Experimental and numerical study of thermo-hydraulic performance of circumferentially ribbed tube with Al2O3 nanofluid. International Communications in Heat and Mass Transfer 69:34–40. doi:10.1016/j.icheatmasstransfer.2015.10.003.
  • Krishnan, S. S. J., and P. K. Nagarajan. 2019. Convective thermal performance and entropy generation analysis on solution combustion synthesis derived magnesia nano-dispersion flow susceptible by a micro-fin tube. Experimental Thermal and Fluid Science 101:1–15. doi:10.1016/j.expthermflusci.2018.10.002.
  • Kumar, S., A. Kumar, A. D. Kothiyal, and M. S. Bisht. 2018. A review of flow and heat transfer behaviour of nanofluids in micro channel heat sinks. Thermal Science and Engineering Progress 8:477–93. doi:10.1016/j.tsep.2018.10.004.
  • Lee, S. K., and S. H. Chang. 2008. Experimental study of post-dryout with R-134a upward flow in smooth tube and rifled tubes. International Journal of Heat and Mass Transfer 51:3153–63. doi:10.1016/j.ijheatmasstransfer.2007.08.026.
  • Liang, G., and I. Mudawar. 2019. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. International Journal of Heat and Mass Transfer 136:324–54. doi:10.1016/j.ijheatmasstransfer.2019.02.086.
  • Ma, Y., A. Shahsavar, and P. Talebizadeh Sardari. 2020. Two-phase mixture simulation of the effect of fin arrangement on first and second law performance of a bifurcation microchannels heatsink operated with biologically prepared water-Ag nanofluid. International Communications in Heat and Mass Transfer 114:104554. doi:10.1016/j.icheatmasstransfer.2020.104554.
  • Mausama, K., S. Kumar, S. K. Ghosh, and A. K. Tiwari. 2020. Solicitation of nanoparticles/fluids in solar thermal energy harvesting: A review. Materials Today: Proceeding 26:2289–95.
  • Mirkhani, N., A. Taklifi, P. Hanafizadeh, and A. Aliabadi. 2018. Numerical study on the hydraulic and thermal performance of internally ribbed tubes in supercritical pressure and sub-critical two-phase flows. The Journal of Supercritical Fluids 136:21–28. doi:10.1016/j.supflu.2018.01.023.
  • Mirmasoumi, S., and A. Behzadmehr. 2008. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Applied Thermal Engineering 28:717–27. doi:10.1016/j.applthermaleng.2007.06.019.
  • Mohammed, H. A., A. N. Al-Shamani, and J. M. Sheriff. 2012. Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib–groove channel. International Communications in Heat and Mass Transfer 39:1548–94.
  • Moraveji, M. K., and E. Esmaeili. 2012. Comparison between single-phase and two-phases CFD modeling of laminar forced convection flow of nanofluids in a circular tube under constant heat flux. International Communications in Heat and Mass Transfer 39:1297–302. doi:10.1016/j.icheatmasstransfer.2012.07.012.
  • Najm Abad, J. M., R. Alizadeh, A. Fattahi, M. H. Doranehgard, E. Alhajri, and N. Karimi. 2020. Analysis of transport processes in a reacting flow of hybrid nanofluid around a bluff-body embedded in porous media using artificial neural network and particle swarm optimization. Journal of Molecular Liquids 313:113492. doi:10.1016/j.molliq.2020.113492.
  • Parsaiemehr, M., F. Pourfattah, O. Ali Akbari, D. Toghraie, and G. Sheikhzadeh. 2018. Turbulent flow and heat transfer of water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica. E, Low-dimensional Systems & Nanostructures 96:73–84. doi:10.1016/j.physe.2017.10.012.
  • Rashidi, M. M., A. Hosseini, I. Pop, S. Kumar, and N. Freidoonimehr. 2014. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Applied Mathematics and Mechanics 35:831–48. doi:10.1007/s10483-014-1839-9.
  • Sarafraz, M. M., and F. Hormozi. 2015. Intensification of forced convection heat transfer using biological nano-fluid in a double-pipe heat exchanger. Experimental Thermal and Fluid Science 66:279–89. doi:10.1016/j.expthermflusci.2015.03.028.
  • Shahsavar, A., M. H. Baseri, A. A. A. A. Al-Rashed, and M. Afrand. 2019. Numerical investigation of forced convection heat transfer and flow irreversibility in a novel heatsink with helical microchannels working with biologically synthesized water-silver nano-fluid. International Communications in Heat and Mass Transfer 108:104324. doi:10.1016/j.icheatmasstransfer.2019.104324.
  • Sun, Q., X. Cai, J. Li, M. Zheng, Z. Chen, and C. P. Yu. 2014. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 444:226–31. doi:10.1016/j.colsurfa.2013.12.065.
  • Toghyani, S., E. Baniasadi, and E. Afshari. 2016. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector. Energy Conversion and Management 121:93–104. doi:10.1016/j.enconman.2016.05.029.
  • Xu, W., D. Ren, Q. Ye, G. Liu, H. Lu, and S. Wang. 2016. Simulations and experiments of laminar heat transfer for Therminol heat transfer fluids in a rifled tube. Applied Thermal Engineering 102:861–72. doi:10.1016/j.applthermaleng.2016.04.011.
  • Yang, Y. T., H. W. Tang, B. Y. Zeng, and C. H. Wu. 2015. Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rectangular rib-grooved channel. International Communications in Heat and Mass Transfer 66:71–79. doi:10.1016/j.icheatmasstransfer.2015.05.022.
  • Zou, B., Y. Jiang, Y. Yao, and H. Yang. 2019. Thermal performance improvement using unilateral spiral ribbed absorber tube for parabolic trough solar collector. Solar Energy 183:371–85. doi:10.1016/j.solener.2019.03.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.