443
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Pyrolysis characteristics and kinetics of lignin: effect of starting lignins

ORCID Icon &
Pages 8096-8108 | Received 19 Jun 2019, Accepted 01 Dec 2020, Published online: 14 Dec 2020

References

  • Anca-Couce, A., N. Zobel, A. Berger, and F. Behrendt. 2012. Smouldering of pine wood: Kinetics and reaction heats. Combustion and Flame 159 (4):1708–19. doi:10.1016/j.combustflame.2011.11.015.
  • Çepelioğullar, Ö., H. Haykırı-Açma, and S. Yaman. 2016. Kinetic modelling of RDF pyrolysis: Model-fitting and model-free approaches. Waste Management 48:275–84. doi:10.1016/j.wasman.2015.11.027.
  • Chen, L., X. Wang, H. Yang, Q. Lu, D. Li, Q. Yang, and H. Chen. 2015. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 113:499–507. doi:10.1016/j.jaap.2015.03.018.
  • Cheng, H., S. Wu, and X. Li. 2015. Comparison of the oxidative pyrolysis behaviors of black liquor solids, alkali lignin and enzymatic hydrolysis/mild acidolysis lignin. RSC Advances 5 (97):79532–37. doi:10.1039/C5RA15455C.
  • Chu, S., A. V. Subrahmanyam, and G. W. Huber. 2012. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chemistry 15 (1):125–36. doi:10.1039/C2GC36332A.
  • Dhyani, V., and T. Bhaskar. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129:695–716. doi:10.1016/j.renene.2017.04.035.
  • Ding, Y., O. A. Ezekoye, S. Lu, C. Wang, and R. Zhou. 2017. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Conversion and Management 132:102–09. doi:10.1016/j.enconman.2016.11.016.
  • Dussan, K., S. Dooley, and R. F. D. Monaghan. 2019. A model of the chemical composition and pyrolysis kinetics of lignin. Proceedings of the Combustion Institute 37 (3):2697–704. doi:10.1016/j.proci.2018.05.149.
  • Hu, J., B. Jiang, J. Liu, Y. Sun, and X. Jiang. 2019a. Influence of interactions between biomass components on physicochemical characteristics of char. Journal of Analytical and Applied Pyrolysis 144:104704. doi:10.1016/j.jaap.2019.104704.
  • Hu, J., S. Wu, X. Jiang, and R. Xiao. 2018. Structure–reactivity relationship in fast pyrolysis of lignin into monomeric phenolic compounds. Energy & Fuels 32 (2):1843–50. doi:10.1021/acs.energyfuels.7b03593.
  • Hu, J., S. Zhang, R. Xiao, X. Jiang, Y. Wang, Y. Sun, and P. Lu. 2019b. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresource Technology 279:228–33. doi:10.1016/j.biortech.2019.01.132.
  • Hu, J., M. Zhao, B. Jiang, S. Wu, and P. Lu. 2020. Catalytic transfer hydrogenolysis of native lignin to monomeric phenols over a Ni–Pd bimetallic catalyst. Energy & Fuels 34 (8):9754–62. doi:10.1021/acs.energyfuels.0c01962.
  • Jiang, G., D. J. Nowakowski, and A. V. Bridgwater. 2010. A systematic study of the kinetics of lignin pyrolysis. Thermochimica acta 498 (1):61–66. doi:10.1016/j.tca.2009.10.003.
  • Kissinger, H. E. 1957. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 29 (11):1702–06. doi:10.1021/ac60131a045.
  • Li, B., G. Liu, W. Gao, H.-Y. Cong, M.-S. Bi, L. Ma, J. Deng, and C.-M. Shu. 2020. Study of combustion behaviour and kinetics modelling of Chinese Gongwusu coal gangue: Model-fitting and model-free approaches. Fuel 268:117284. doi:10.1016/j.fuel.2020.117284.
  • Li, B., W. Lv, Q. Zhang, T. Wang, and L. Ma. 2014. Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products. Journal of Analytical and Applied Pyrolysis 108:295–300. doi:10.1016/j.jaap.2014.04.002.
  • Li, C., X. Zhao, A. Wang, G. W. Huber, and T. Zhang. 2015. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews 115 (21):11559. doi:10.1021/acs.chemrev.5b00155.
  • Ma, Z., J. Wang, Y. Yang, Y. Zhang, C. Zhao, Y. Yu, and S. Wang. 2018. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. Journal of Analytical and Applied Pyrolysis 134:12–24. doi:10.1016/j.jaap.2018.04.002.
  • Ojha, D. K., D. Viju, and R. Vinu. 2017. Fast pyrolysis kinetics of alkali lignin: Evaluation of apparent rate parameters and product time evolution. Bioresource Technology 241:142–51. doi:10.1016/j.biortech.2017.05.084.
  • Polat, S., and P. Sayan. 2020. Assessment of the thermal pyrolysis characteristics and kinetic parameters of spent coffee waste: A TGA-MS study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2020.1736693.
  • Schutyser, W., T. Renders, S. Van den Bosch, S.-F. Koelewijn, G. Beckham, and B. F. Sels. 2018. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews 47 (3):852–908.
  • Shen, D., W. Jin, J. Hu, R. Xiao, and K. Luo. 2015. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renewable and Sustainable Energy Reviews 51:761–74. doi:10.1016/j.rser.2015.06.054.
  • Shen, D., J. Zhao, and R. Xiao. 2016. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species. Energy Conversion and Management 124:61–72. doi:10.1016/j.enconman.2016.06.067.
  • Starink, M. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica acta 404 (1):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Wang, G., J. Zhang, J. Shao, Z. Liu, G. Zhang, T. Xu, J. Guo, H. Wang, R. Xu, and H. Lin. 2016. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Conversion and Management 124:414–26. doi:10.1016/j.enconman.2016.07.045.
  • Wang, M., R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens, and Y. Fang. 2019. Biomass-derived aviation fuels: Challenges and perspective. Progress in Energy and Combustion Science 74:31–49. doi:10.1016/j.pecs.2019.04.004.
  • Wang, Q., J. Zhang, G. Wang, H. Wang, and M. Sun. 2018. Thermal and kinetic analysis of coal with different waste plastics (PVC) in cocombustion. Energy & Fuels 32 (2):2145–55. doi:10.1021/acs.energyfuels.7b03268.
  • Wang, S., G. Dai, H. Yang, and Z. Luo. 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 62 (62):33–86. doi:10.1016/j.pecs.2017.05.004.
  • Wang, S., B. Ru, H. Lin, W. Sun, and Z. Luo. 2015. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource Technology 182:120–27. doi:10.1016/j.biortech.2015.01.127.
  • Xu, F., B. Wang, D. Yang, J. Hao, Y. Qiao, and Y. Tian. 2018. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Conversion and Management 171:1106–15. doi:10.1016/j.enconman.2018.06.047.
  • Xu, L., Y. Zhang, and Y. Fu. 2016. Advances in upgrading lignin pyrolysis vapors by ex situ catalytic fast pyrolysis. Energy Technology 4:1–23.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yang, J., X. Wang, B. Shen, Z. Hu, L. Xu, and S. Yang. 2020. Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation. Renewable Energy 161:963–71. doi:10.1016/j.renene.2020.08.024.
  • Zhou, S., Y. Xue, A. Sharma, and X. Bai. 2016. Lignin valorization through thermochemical conversion: Comparison of hardwood, softwood and herbaceous lignin. ACS Sustainable Chemistry & Engineering 4 (12):6608–17. doi:10.1021/acssuschemeng.6b01488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.