572
Views
11
CrossRef citations to date
0
Altmetric
Review

Characteristics of PM and soot emissions of internal combustion engines running on biomass-derived DMF biofuel: a review

ORCID Icon, , ORCID Icon, , &
Pages 8335-8356 | Received 04 Aug 2020, Accepted 21 Dec 2020, Published online: 31 Dec 2020

References

  • Alexandrino, K. 2020. Comprehensive review of the impact of 2, 5-Dimethylfuran and 2-Methylfuran on soot emissions: Experiments in diesel engines and at laboratory-scale. Energy & Fuels 34 (6):6598–623. doi:10.1021/acs.energyfuels.0c00492.
  • Alexandrino, K., A. Millera, R. Bilbao, and M. U. Alzueta. 2014. Interaction between 2, 5-Dimethylfuran and nitric oxide: Experimental and modeling study. Energy & Fuels 28 (6):4193–98. doi:10.1021/ef5005573.
  • Alexandrino, K., P. Salvo, Á. Millera, R. Bilbao, and M. U. Alzueta. 2016. Influence of the temperature and 2, 5-Dimethylfuran concentration on its sooting tendency. Combustion Science and Technology 188 (4–5):651–66. doi:10.1080/00102202.2016.1138828.
  • Almohammadi, B. A., P. Singh, S. Sharma, S. Kumar, and B. Khandelwal. 2020. Impact of Alkylbenzenes in formulated surrogate fuel on characteristics of compression ignition engine. Fuel 266:116981. doi:10.1016/j.fuel.2019.116981.
  • An, H., W. M. Yang, A. Maghbouli, S. K. Chou, and K. J. Chua. 2013. Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling. Applied Energy 102:647–56. doi:10.1016/j.apenergy.2012.08.009.
  • Atarod, P., E. Khlaife, M. Aghbashlo, M. Tabatabaei, A. T. Hoang, H. Mobli, M. H. Nadian, H. Hosseinzadeh-Bandbafha, P. Mohammadi, T. Roodbar Shojaei. et al. 2020. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ‎emulsion fuel. Journal of Hazardous Materials:124369. doi:10.1016/j.jhazmat.2020.124369., October.
  • Bockhorn, H. 1994. A short introduction to the problem—structure of the following parts. In Soot formation in combustion, 3–7. Springer.
  • BS, N. P., and G. N. Kumar. 2019. Influence of ignition timing on performance and emission characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. https://doi.org/10.1080/15567036.2019.1670292
  • Bui, T. T., H. Q. Luu, A. T. Hoang, O. Konur, H. T. Pham, and M. T. Pham. 2021. A review on ignition delay times of 2,5-Dimethylfuran. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1860163.
  • Çakmak, A., M. Kapusuz, and H. Özcan. 2020. Experimental research on ethyl acetate as novel oxygenated fuel in the Spark-Ignition (SI) engines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1736216.
  • Cao, D. N., A. T. Hoang, H. Q. Luu, V. G. Bui, and T. T. H. Tran. 2020. Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2020.1754531.
  • Chau, M. Q., D. C. Nguyen, A. T. Hoang, Q. V. Tran, and V. V. Pham. 2020. A numeral simulation determining optimal ignition timing advance of SI engines using 2.5-Dimethylfuran-gasoline blends. International Journal on Advanced Science, Engineering and Information Technology 10 (5):1933–38. doi:10.18517/ijaseit.10.5.13051.
  • Chen, G., Y. Shen, Q. Zhang, M. Yao, Z. Zheng, and H. Liu. 2013. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2, 5-Dimethylfuran–Diesel, n-Butanol–Diesel and Gasoline–Diesel blends. Energy 54:333–42. doi:10.1016/j.energy.2013.02.069.
  • Cheng, Z., L. Xing, M. Zeng, W. Dong, F. Zhang, F. Qi, and Y. Li. 2014. Experimental and kinetic modeling study of 2, 5-Dimethylfuran pyrolysis at various pressures. Combustion and Flame 161 (10):2496–511. doi:10.1016/j.combustflame.2014.03.022.
  • Conesa, J. A., and A. Domene. 2011. Biomasses pyrolysis and combustion kinetics through N-Th order parallel reactions. Thermochimica Acta 523 (1–2):176–81. doi:10.1016/j.tca.2011.05.021.
  • Cotana, F., G. Cavalaglio, A. Nicolini, M. Gelosia, V. Coccia, A. Petrozzi, and L. Brinchi. 2014. Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 45:52–60. doi:10.1016/j.egypro.2014.01.007.
  • Crossley, S. P., W. E. Alvarez, and D. E. Resasco. 2008. Novel Micropyrolyis Index (Mpi) to estimate the sooting tendency of fuels. Energy & Fuels 22 (4):2455–64. doi:10.1021/ef800058y.
  • Daniel, R., G. Tian, H. Xu, and S. Shuai. 2012. Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine. Fuel 99:72–82. doi:10.1016/j.fuel.2012.01.053.
  • Daniel, R., G. Tian, H. Xu, M. L. Wyszynski, X. Wu, and Z. Huang. 2011. Effect of spark timing and load on a DISI engine fuelled with 2, 5-Dimethylfuran. Fuel 90 (2):449–58. doi:10.1016/j.fuel.2010.10.008.
  • Donkerbroek, A. J., M. D. Boot, C. C. M. Luijten, N. J. Dam, and J. J. Ter Meulen. 2011. Flame lift-off length and soot production of oxygenated fuels in relation with ignition delay in a DI heavy-duty diesel engine. Combustion and Flame 158 (3):525–38. doi:10.1016/j.combustflame.2010.10.003.
  • Dutta, A., D. Gupta, A. K. Patra, B. Saha, and A. Bhaumik. 2014. Synthesis of 5‐hydroxymethylfurural from carbohydrates using large‐pore mesoporous tin phosphate. ChemSusChem 7 (3):925–33. doi:10.1002/cssc.201300766.
  • Dutta, S. 2012. Deoxygenation of biomass‐derived feedstocks: Hurdles and opportunities. ChemSusChem 5 (11):2125–27. doi:10.1002/cssc.201200596.
  • Dworkin, S. B., Q. Zhang, M. J. Thomson, N. A. Slavinskaya, and U. Riedel. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combustion and Flame 158 (9):1682–95. doi:10.1016/j.combustflame.2011.01.013.
  • Eldeeb, M. A., and B. Akih-Kumgeh. 2018. Recent trends in the production, combustion and modeling of furan-based fuels. Energies 11 (3):512. doi:10.3390/en11030512.
  • Gargiulo, V., M. Alfè, G. Di Blasio, and C. Beatrice. 2015. Chemico-physical features of soot emitted from a dual-fuel ethanol–diesel system. Fuel 150:154–61. doi:10.1016/j.fuel.2015.01.096.
  • Gogoi, B., A. Raj, M. M. Alrefaai, S. Stephen, T. Anjana, V. Pillai, and S. Bojanampati. 2015. Effects of 2, 5-Dimethylfuran addition to diesel on soot nanostructures and reactivity. Fuel 159:766–75. doi:10.1016/j.fuel.2015.07.038.
  • Guan, C., C. S. Cheung, X. Li, and Z. Huang. 2017. Effects of oxygenated fuels on the particle-phase compounds emitted from a diesel engine. Atmospheric Pollution Research 8 (2):209–20. doi:10.1016/j.apr.2016.08.005.
  • Hayes, D. J. M. 2013. Second‐generation biofuels: Why they are taking so long. Wiley Interdisciplinary Reviews: Energy and Environment 2 (3):304–34. doi:10.1002/wene.59.
  • He, X., X. Ma, F. Wu, and J. Wang. 2008. Investigation of soot formation in the oxygenated fuels flame by laser induced fluorescence and incandescence. In COMODIA. Sapporo, Japan. SAE Technical Paper 2008-01-1064, 2008, https://doi.org/10.4271/2008-01-1064.
  • Hoang, A. T. 2018. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering & Technology 1–13. doi:10.1080/20464177.2018.1532734.
  • Hoang, A. T. 2020. Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on Narrow-Angle Direct Injection (NADI). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1805048.
  • Hoang, A. T., and D. C. Nguyen. 2018. Properties of DMF-fossil gasoline RON95 blends in the consideration as the alternative fuel. International Journal on Advanced Science, Engineering and Information Technology 8 (6):2555–60. doi:10.18517/ijaseit.8.6.7214.
  • Hoang, A. T., S. Nižetić, A. I. Ölçer, and H. C. Ong. 2020. Synthesis pathway and fundamental combustion mechanism of a sustainable biofuel 2,5-Dimethylfuran: Progress and prospective. Fuel. doi:10.1016/j.fuel.2020.119337.
  • Hoang, A. T., S. Nižetić, and V. V. Pham. 2020. A state-of-the-art review on emission characteristics of SI and CI engines fueled with 2,5-Dimethylfuran biofuel. Environmental Science and Pollution Research. doi:10.1007/s11356-020-11629-8.
  • Hoang, A. T., S. Nižetić, V. V. Pham, A. T. Le, V. G. Bui, and V. V. Le. 2021a. Combustion and emission characteristics of spark and compression ignition engine fueled with 2,5-Dimethylfuran (DMF): A comprehensive review. Fuel 285:119140. doi:10.1016/j.fuel.2020.119757.
  • Hoang, A. T., A. I. Ölçer, and S. Nižetić. 2020. Prospective review on the application of biofuel 2, 5-Dimethylfuran to diesel engine. Journal of the Energy Institute. doi:10.1016/j.joei.2020.10.004.
  • Hoang, A. T., and V. V. Pham. 2018. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2018.1520344.
  • Hoang, A. T., M. Tabatabaei, M. Aghbashlo, A. P. Carlucci, A. I. Ölçer, A. T. Le, and A. Ghassemi. 2021b. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable and Sustainable Energy Reviews 135:110204. doi:10.1016/j.rser.2020.110204.
  • Hoang, A. T., Q. V. Tran, A. R. M. S. Al-Tawaha, V. V. Pham, and X. P. Nguyen. 2019. Comparative analysis on performance and emission characteristics of an in-Vietnam popular 4-Stroke motorcycle engine running on biogasoline and mineral gasoline. Renewable Energy Focus 28:47–55. doi:10.1016/j.ref.2018.11.001.
  • Hu, L., Y. Jiang, J. Xu, A. He, Z. Wu, and J. Xu. 2020. Chemocatalytic pathways for high-efficiency production of 2, 5-Dimethylfuran from biomass-derived 5-hydroxymethylfurfural. In Shunmugavel Saravanamurugan, Ashok Pandey, Hu Li, Anders Riisager (Eds.) Biomass, biofuels, biochemicals, 377–94. Elsevier.
  • Hu, L., L. Lin, Z. Wu, S. Zhou, and S. Liu. 2017. Recent advances in catalytic transformation of biomass-derived 5-Hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews 74:230–57. doi:10.1016/j.rser.2017.02.042.
  • Imtenan, S., M. Varman, H. H. Masjuki, M. A. Kalam, H. Sajjad, M. I. Arbab, and I. M. Rizwanul Fattah. 2014. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Conversion and Management 80:329–56. doi:10.1016/j.enconman.2014.01.020.
  • Jia, P., Y. Ying, M. Luo, B. Jiang, and D. Liu. 2018. Effects of swirling combustion on soot characteristics in 2, 5-Dimethylfuran/n-heptane diffusion flames. Applied Thermal Engineering 139:11–24. doi:10.1016/j.applthermaleng.2018.04.049.
  • Jiang, B., P. Wang, Y. Ying, M. Luo, and D. Liu. 2018. Nanoscale characteristics and reactivity of nascent soot from N-Heptane/2, 5-Dimethylfuran inverse diffusion flames with/without magnetic fields. Energies 11 (7):1698. doi:10.3390/en11071698.
  • Kalghatgi, G. T., L. Hildingsson, A. J. Harrison, and B. Johansson. 2011. Autoignition quality of gasoline fuels in partially premixed combustion in diesel engines. Proceedings of the Combustion Institute 33 (2):3015–21. doi:10.1016/j.proci.2010.07.007.
  • Khan, O., A. K. Yadav, M. E. Khan, and M. Parvez. 2019. Characterization of bioethanol obtained from eichhornia crassipes plant; Its emission and performance analysis on CI engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2019.1648600.
  • Knothe, G., J. Krahl, and J. Van Gerpen. 2015. The biodiesel handbook. Elsevier.
  • Kumalaputri, A. J., G. Bottari, P. M. Erne, H. J. Heeres, and K. Barta. 2014. Tunable and selective conversion of 5‐HMF to 2, 5‐Furandimethanol and 2, 5‐Dimethylfuran over copper‐doped porous metal oxides. ChemSusChem 7 (8):2266–75. doi:10.1002/cssc.201402095.
  • Kumar, R., M. Tabatabaei, K. Karimi, and I. S. Horváth. 2016. Recent updates on lignocellulosic biomass derived Ethanol-A review. Biofuel Research Journal 3 (1):347–56. doi:10.18331/BRJ2016.3.1.4.
  • Le, V. V., A. T. Hoang, S. Nizetić, and A. I. Ölçer. 2021. Flame characteristics and ignition delay times of 2, 5-Dimethylfuran: A systematic review with comparative analysis. Journal of Energy Resources Technology 43 (7):1–16. doi:10.1115/1.4048673.
  • Li, J., Y. Ge, H. Wang, C. Yu, X. Yan, L. Hao, and J. Tan. 2019. Effects of different diesel particulate filter on emission characteristics of in-use diesel vehicles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (24):2989–3000. doi:10.1080/15567036.2019.1582738.
  • Lifshitz, A., C. Tamburu, and R. Shashua. 1998. Thermal decomposition of 2, 5-Dimethylfuran. Experimental results and computer modeling. The Journal of Physical Chemistry A 102 (52):10655–70. doi:10.1021/jp982772b.
  • Liu, D., C. Togbé, L.-S. Tran, D. Felsmann, P. Oßwald, P. Nau, J. Koppmann, A. Lackner, P.-A. Glaude, and B. Sirjean. 2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography–Part I: Furan. Combustion and Flame 161 (3):748–65. doi:10.1016/j.combustflame.2013.05.028.
  • Liu, H., X. Wang, D. Zhang, F. Dong, X. Liu, Y. Yang, H. Huang, Y. Wang, Q. Wang, and Z. Zheng. 2019. Investigation on blending effects of gasoline fuel with N-Butanol, DMF, and ethanol on the fuel consumption and harmful emissions in a GDI vehicle. Energies 12 (10):1845. doi:10.3390/en12101845.
  • Liu, H., J. Xu, Z. Zheng, S. Li, and M. Yao. 2013. Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2, 5-Dimethylfuran/diesel blends. Energy 62:215–23. doi:10.1016/j.energy.2013.09.057.
  • Liu, H., P. Zhang, X. Liu, B. Chen, C. Geng, B. Li, H. Wang, Z. Li, and M. Yao. 2018. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combustion and Flame 188:129–41. doi:10.1016/j.combustflame.2017.09.025.
  • Liu, X., H. Wang, L. Wei, J. Liu, R. D. Reitz, and M. Yao. 2016. Development of a reduced Toluene Reference Fuel (TRF)-2, 5-Dimethylfuran-Polycyclic Aromatic Hydrocarbon (PAH) mechanism for engine applications. Combustion and Flame 165:453–65. doi:10.1016/j.combustflame.2015.12.030.
  • Liu, X., H. Wang, and M. Yao. 2017. Experimental and modeling investigations on soot formation of ethanol, n-Butanol, 2, 5-Dimethylfuran, and biodiesel in diesel engines. Energy & Fuels 31 (11):12108–19. doi:10.1021/acs.energyfuels.7b01622.
  • Liu, X., M. Yao, Y. Wang, Z. Wang, H. Jin, and L. Wei. 2015. Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2, 5-Dimethylfuran/oxygen/argon flames. Combustion and Flame 162 (12):4586–97. doi:10.1016/j.combustflame.2015.09.017.
  • Ma, X., C. Jiang, H. Xu, and S. Richardson. 2012. In-cylinder optical study on combustion of DMF and DMF fuel blends. SAE Technical Paper.
  • Ma, X., H. Xu, C. Jiang, and S. Shuai. 2014. Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine. Applied Energy 122:247–60. doi:10.1016/j.apenergy.2014.01.071.
  • McEnally, C. S., and L. D. Pfefferle. 2009. Sooting tendencies of nonvolatile aromatic hydrocarbons. Proceedings of the Combustion Institute 32 (1):673–79. doi:10.1016/j.proci.2008.06.197.
  • Mühlbauer, W., C. Zöllner, S. Lehmann, S. Lorenz, and D. Brüggemann. 2016. Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity. Combustion and Flame 167:39–51. doi:10.1016/j.combustflame.2016.02.029.
  • Naser, N., S. Y. Yang, G. Kalghatgi, and S. H. Chung. 2017. Relating the octane numbers of fuels to ignition delay times measured in an Ignition Quality Tester (IQT). Fuel 187:117–27. doi:10.1016/j.fuel.2016.09.013.
  • Nezam, I., L. Peereboom, and D. J. Miller. 2019. Continuous condensed-phase ethanol conversion to higher alcohols: Experimental results and techno-economic analysis. Journal of Cleaner Production 209:1365–75. doi:10.1016/j.jclepro.2018.10.276.
  • Nguyen, D. C., A. T. Hoang, Q. V. Tran, H. Hadiyanto, K. Wattanavichien, and V. V. Pham. 2020a. A review on the performance, combustion, and emission characteristics of spark-ignition engine fueled with 2,5-Dimethylfuran compared to ethanol and gasoline. Journal of Energy Resources Technology 143 (4). doi: 10.1115/1.4048228.
  • Nguyen, H. P., A. T. Hoang, S. Nizetic, X. P. Nguyen, A. T. Le, C. N. Luong, V. D. Chu, and V. V. Pham. 2020b. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems e12580. doi:10.1002/2050-7038.12580.
  • Peña, G. D. J., Y. A. Guerrero, A. R. Hammid, S. Stephen, T. Anjana, and V. Balasubramanian. 2018. On the characteristics and reactivity of soot particles from ethanol-gasoline and 2, 5-Dimethylfuran-gasoline blends. Fuel 222:42–55. doi:10.1016/j.fuel.2018.02.147.
  • Pepiot-Desjardins, P., H. Pitsch, R. Malhotra, S. R. Kirby, and A. L. Boehman. 2008. Structural group analysis for soot reduction tendency of oxygenated fuels. Combustion and Flame 154 (1–2):191–205. doi:10.1016/j.combustflame.2008.03.017.
  • Qian, Y., L. Zhu, Y. Wang, and X. Lu. 2015. Recent progress in the development of biofuel 2, 5-Dimethylfuran. Renewable and Sustainable Energy Reviews 41:633–46. doi:10.1016/j.rser.2014.08.085.
  • RÖnkkÖ, T., A. Virtanen, J. Kannosto, J. Keskinen, M. Lappi, and L. Pirjola. 2007. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environmental Science & Technology 41 (18):6384–89. doi:10.1021/es0705339.
  • Rothamer, D. A., and J. H. Jennings. 2012. Study of the knocking propensity of 2, 5-Dimethylfuran–gasoline and ethanol–gasoline blends. Fuel 98:203–12. doi:10.1016/j.fuel.2012.03.049.
  • Rounce, P., A. Tsolakis, and A. P. E. York. 2012. Speciation of particulate matter and hydrocarbon emissions from biodiesel combustion and its reduction by aftertreatment. Fuel 96:90–99. doi:10.1016/j.fuel.2011.12.071.
  • Russo, C., A. D’Anna, A. Ciajolo, and M. Sirignano. 2016. Analysis of the chemical features of particles generated from ethylene and ethylene/2, 5 Dimethyl furan flames. Combustion and Flame 167:268–73. doi:10.1016/j.combustflame.2016.02.003.
  • Saha, B., and M. M. Abu-Omar. 2014. Advances in 5-Hydroxymethylfurfural production from biomass in biphasic solvents. Green Chemistry 16 (1):24–38. doi:10.1039/C3GC41324A.
  • Sahu, A. B., S. Markendaya, P. Badhuk, and R. V. Ravikrishna. 2020a. Experiments and kinetic modeling of diffusion flame extinction of 2-Methylfuran, 2, 5-Dimethylfuran, and binary mixtures with isooctane. Energy & Fuels 34 (2):2293–303. doi:10.1021/acs.energyfuels.9b03375.
  • Simmie, J. M., and H. J. Curran. 2009. Formation enthalpies and bond dissociation energies of alkylfurans. The strongest C X bonds known? The Journal of Physical Chemistry A 113 (17):5128–37. doi:10.1021/jp810315n.
  • Singh, A. P., and A. K. Agarwal. 2019. Characteristics of particulates emitted by IC engines using advanced combustion strategies. In Advanced engine diagnostics, 57–71. Singapore: Springer.
  • Sirignano, M., M. Conturso, and A. D’Anna. 2015. Effect of furans on particle formation in diffusion flames: An experimental and modeling study. Proceedings of the Combustion Institute 35 (1):525–32. doi:10.1016/j.proci.2014.05.062.
  • Sirjean, B., R. Fournet, P.-A. Glaude, F. Battin-Leclerc, W. Wang, and M. A. Oehlschlaeger. 2013. Shock tube and chemical kinetic modeling study of the oxidation of 2, 5-Dimethylfuran. The Journal of Physical Chemistry A 117 (7):1371–92. doi:10.1021/jp308901q.
  • Somers, K. P., J. M. Simmie, F. Gillespie, C. Conroy, G. Black, W. K. Metcalfe, F. Battin-Leclerc, P. Dirrenberger, O. Herbinet, and P.-A. Glaude. 2013. A comprehensive experimental and detailed chemical kinetic modelling study of 2, 5-Dimethylfuran pyrolysis and oxidation. Combustion and Flame 160 (11):2291–318. doi:10.1016/j.combustflame.2013.06.007.
  • Song, H., K. S. Quinton, Z. Peng, H. Zhao, and N. Ladommatos. 2016. Effects of oxygen content of fuels on combustion and emissions of diesel engines. Energies 9 (1):28. doi:10.3390/en9010028.
  • Tran, L.-S., B. Sirjean, P.-A. Glaude, K. Kohse-Höinghaus, and F. Battin-Leclerc. 2015. Influence of substituted furans on the formation of polycyclic aromatic hydrocarbons in flames. Proceedings of the Combustion Institute 35 (2):1735–43. doi:10.1016/j.proci.2014.06.137.
  • Tran, L.-S., Z. Wang, H.-H. Carstensen, C. Hemken, F. Battin-Leclerc, and K. Kohse-Höinghaus. 2017. Comparative experimental and modeling study of the low-to moderate-temperature oxidation chemistry of 2, 5-Dimethylfuran, 2-Methylfuran, and furan. Combustion and Flame 181:251–69. doi:10.1016/j.combustflame.2017.03.030.
  • Wang, C., H. Xu, R. Daniel, A. Ghafourian, J. M. Herreros, S. Shuai, and X. Ma. 2013a. Combustion characteristics and emissions of 2-Methylfuran compared to 2, 5-Dimethylfuran, gasoline and ethanol in a DISI engine. Fuel 103:200–11. doi:10.1016/j.fuel.2012.05.043.
  • Wang, C., H. Xu, J. M. Herreros, T. Lattimore, and S. Shuai. 2014. Fuel effect on particulate matter composition and soot oxidation in a Direct-Injection Spark Ignition (DISI) engine. Energy & Fuels 28 (3):2003–12. doi:10.1021/ef402234z.
  • Wang, F., Z. L. Zheng, and Z. W. He. 2015. A soot precursor formation embedded reaction mechanism of diesel surrogate fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (12):1323–31. doi:10.1080/15567036.2011.610867.
  • Wang, L., C. Song, J. Song, G. Lv, H. Pang, and W. Zhang. 2013b. Aliphatic C–H and oxygenated surface functional groups of diesel in-cylinder soot: Characterizations and impact on soot oxidation behavior. Proceedings of the Combustion Institute 34 (2):3099–106. doi:10.1016/j.proci.2012.07.052.
  • Wang, X., C. S. Cheung, Y. Di, and Z. Huang. 2012. Diesel engine gaseous and particle emissions fueled with diesel–oxygenate blends. Fuel 94:317–23. doi:10.1016/j.fuel.2011.09.016.
  • Wang, X., Y. Wang, Y. Bai, P. Wang, D. Wang, and F. Guo. 2019. Effects of 2, 5-Dimethylfuran addition on morphology, nanostructure and oxidation reactivity of diesel exhaust particles. Fuel 253:731–40. doi:10.1016/j.fuel.2019.05.055.
  • Wei, L., C. S. Cheung, and Z. Ning. 2016. Influence of waste cooking oil biodiesel on the nanostructure and volatility of particles emitted by a direct-injection diesel engine. Aerosol Science and Technology 50 (9):893–905. doi:10.1080/02786826.2016.1203390.
  • Wei, L., L. Tong, J. Xu, Z. Wang, H. Jin, M. Yao, Z. Zheng, H. Li, and H. Xu. 2014. Primary combustion intermediates in low-pressure premixed laminar 2, 5-Dimethylfuran/oxygen/argon flames. Combustion Science and Technology 186 (3):355–76. doi:10.1080/00102202.2013.857666.
  • Wei, M., S. Li, J. Liu, G. Guo, Z. Sun, and H. Xiao. 2017. Effects of injection timing on combustion and emissions in a diesel engine fueled with 2, 5-Dimethylfuran-diesel blends. Fuel 192:208–17. doi:10.1016/j.fuel.2016.11.084.
  • Wei, M., S. Li, H. Xiao, and G. Guo. 2018. A comparison study on the combustion and particulate emissions of 2, 5-Dimethylfuran/diesel and ethanol/diesel in a diesel engine. Thermal Science 22 (3):1351–61. doi:10.2298/TSCI170704192W.
  • Weiser, L., I. Weber, and M. Olzmann. 2019. Pyrolysis of furan and its methylated derivatives: A shock-tube/TOF-MS and modeling study. The Journal of Physical Chemistry A 123 (46):9893–904. doi:10.1021/acs.jpca.9b06967.
  • Wu, X., R. Daniel, G. Tian, H. Xu, Z. Huang, and D. Richardson. 2011a. Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends. Applied Energy 88 (7):2305–14. doi:10.1016/j.apenergy.2011.01.025.
  • Wu, X., Z. Huang, X. Wang, C. Jin, C. Tang, L. Wei, and C. K. Law. 2011b. Laminar burning velocities and flame instabilities of 2, 5-Dimethylfuran–air mixtures at elevated pressures. Combustion and Flame 158 (3):539–46. doi:10.1016/j.combustflame.2010.10.006.
  • Xiao, H., B. Hou, P. Zeng, A. Jiang, X. Hou, and J. Liu. 2017a. Combustion and emission characteristics of diesel engine fueled with 2, 5-Dimethylfuran and diesel blends. Fuel 192:53–59. doi:10.1016/j.fuel.2016.12.007.
  • Xiao, H., P. Zeng, L. Zhao, Z. Li, and X. Fu. 2017b. An experimental study of the combusition and emission performances of 2, 5-Dimethylfuran diesel blends on a diesel engine. Thermal Science 21 (1 Part B):543–53. doi:10.2298/TSCI160526226X.
  • Xu, H., and C. Wang. 2016. A comprehensive review of 2, 5-Dimethylfuran as a biofuel candidate. Biofuels from Lignocellulosic Biomass: Innovations beyond Bioethanol 105–29. doi:10.1002/9783527685318
  • Xu, N., Y. Wu, C. Tang, P. Zhang, X. He, Z. Wang, and Z. Huang. 2016. Experimental study of 2, 5-Dimethylfuran and 2-Methylfuran in a rapid compression machine: Comparison of the ignition delay times and reactivity at low to intermediate temperature. Combustion and Flame 168:216–27. doi:10.1016/j.combustflame.2016.03.016.
  • Yan, S., E. G. Eddings, A. B. Palotas, R. J. Pugmire, and A. F. Sarofim. 2005. Prediction of sooting tendency for hydrocarbon liquids in diffusion flames. Energy & Fuels 19 (6):2408–15. doi:10.1021/ef050107d.
  • Yang, Y., A. L. Boehman, and R. J. Santoro. 2007. A study of jet fuel sooting tendency using the Threshold Sooting Index (TSI) model. Combustion and Flame 149 (1–2):191–205. doi:10.1016/j.combustflame.2006.11.007.
  • Yuen, A. C. Y., G. H. Yeoh, V. Timchenko, S. C. P. Cheung, and T. J. Barber. 2016. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. International Journal of Heat and Mass Transfer 96:171–88. doi:10.1016/j.ijheatmasstransfer.2016.01.026.
  • Zhang, Q., G. Chen, Z. Zheng, H. Liu, J. Xu, and M. Yao. 2013a. Combustion and emissions of 2, 5-Dimethylfuran addition on a diesel engine with low temperature combustion. Fuel 103:730–35. doi:10.1016/j.fuel.2012.08.045.
  • Zhang, Q., X. Hu, Z. Li, B. Liu, Z. Chen, and J. Liu. 2018. Combustion and emission characteristics of diesel engines using diesel, DMF/diesel, and N‐pentanol/diesel fuel blends. J Energy Eng 144 (3):4018030. doi:10.1061/(ASCE)EY.1943-7897.0000549.
  • Zhang, Q., M. Yao, J. Luo, H. Chen, and X. Zhang. 2013b. Diesel engine combustion and emissions of 2, 5-Dimethylfuran-diesel blends with 2-Ethylhexyl nitrate addition. Fuel 111:887–91. doi:10.1016/j.fuel.2013.04.009.
  • Zheng, Z., M. Xia, H. Liu, X. Wang, and M. Yao. 2018. Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-Butanol, Biodiesel/2, 5-Dimethylfuran and Biodiesel/Ethanol. Energy 148:824–38. doi:10.1016/j.energy.2018.02.015.
  • Zhong, S., R. Daniel, H. Xu, J. Zhang, D. Turner, M. L. Wyszynski, and P. Richards. 2010. Combustion and emissions of 2, 5-Dimethylfuran in a direct-injection spark-ignition engine. Energy & Fuels 24 (5):2891–99. doi:10.1021/ef901575a.
  • Zhu, M., Y. Ma, Z. Zhang, Y. L. Chan, and D. Zhang. 2015. Effect of oxygenates addition on the flame characteristics and soot formation during combustion of single droplets of a petroleum diesel in air. Fuel 150:88–95. doi:10.1016/j.fuel.2015.02.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.