144
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Cooling capacity of magnetic nanofluid in presence of magnetic field based on first and second laws of thermodynamics analysis

, ORCID Icon, &
Pages 7825-7840 | Received 09 Nov 2020, Accepted 31 Dec 2020, Published online: 21 Feb 2021

References

  • Abolbashari, M. H., N. Freidoonimehr, F. Nazari, and M. M. Rashidi. 2014. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technology 267:256–67. doi:10.1016/j.powtec.2014.07.028.
  • Amani, M., M. Ameri, and A. Kasaeian. 2018. Hydrothermal assessment of ferrofluids in a metal foam tube under low-frequency magnetic field. International Journal of Thermal Sciences 127:242–51. doi:10.1016/j.ijthermalsci.2018.01.031.
  • Asfer, M., B. Mehta, A. Kumar, S. Khandekar, and P. K. Panigrahi. 2016. Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. International Journal of Heat and Fluid Flow 59:74–86. doi:10.1016/j.ijheatfluidflow.2016.01.009.
  • Bahiraei, M., M. Jamshidmofid, and S. Heshmatian. 2017. Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution. Advanced Powder Technology 28 (9):2380–92. doi:10.1016/j.apt.2017.06.021.
  • Bahrami, D., S. Abbasian‐Naghneh, A. Karimipour, and A. Karimipour. 2020. Efficacy of injectable rib height on the heat transfer and entropy generation in the microchannel by affecting slip flow. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.6728.
  • Bahrami, D., A. A. Nadooshan, and M. Bayareh. 2020. Numerical study on the effect of planar normal and Halbach magnet arrays on micromixing. International Journal of Chemical Reactor Engineering 1. doi:10.1515/ijcre-2020-0080.
  • Barnoon, P., D. Toghraie, F. Eslami, and B. Mehmandoust. 2019. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches. Computers & Mathematics with Applications 77 (3):662–92. doi:10.1016/j.camwa.2018.10.005.
  • Bhatti, M. M., T. Abbas, M. M. Rashidi, and M. E.-S. Ali. 2016. Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18 (6):200. doi:10.3390/e18060200.
  • Bovand, M., S. Rashidi, M. Dehghan, J. Esfahani, and M. Valipour. 2015. Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field. Journal of Magnetism and Magnetic Materials 385:198–206. doi:10.1016/j.jmmm.2015.03.012.
  • Bovand, M., S. Rashidi, J. A. Esfahani, S. Saha, Y. Gu, and M. Dehesht. 2016. Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic. Journal of Magnetism and Magnetic Materials 401:1078–87. doi:10.1016/j.jmmm.2015.11.019.
  • Brinkman, H. 1952. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics 20 (4):571–571. doi:10.1063/1.1700493.
  • Butt, A. S., S. Munawar, A. Ali, and A. Mehmood. 2012. Entropy generation in the Blasius flow under thermal radiation. Physica Scripta 85 (3):035008. doi:10.1088/0031-8949/85/03/035008.
  • Fattahi, A. 2020. LBM simulation of thermo-hydrodynamic and irreversibility characteristics of a nanofluid in microchannel heat sink under affecting a magnetic field. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1800868.
  • Gomari, S. R., R. Alizadeh, A. Alizadeh, and N. Karimi. 2019. Generation of entropy during forced convection of heat in nanofluid stagnation-point flows over a cylinder embedded in porous media. Numerical Heat Transfer, Part A: Applications 75 (10):647–73. doi:10.1080/10407782.2019.1608774.
  • Gupta, M., V. Singh, R. Kumar, and Z. Said. 2017. A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews 74:638–70. doi:10.1016/j.rser.2017.02.073.
  • Hong, S. H., and P. Hrnjak, “Heat transfer in thermally developing flow of fluids with high Prandtl numbers preceding and following U-bend,” Air Conditioning and Refrigeration Center. College of Engineering, 1999.
  • Jiji, L. M. 2006. Heat Convection. Springer-Verlag, Berlin Heidelberg.
  • Karimipour, A., D. Bahrami, R. Kalbasi, and A. Marjani. 2020. Diminishing vortex intensity and improving heat transfer by applying magnetic field on an injectable slip microchannel containing FMWNT/water nanofluid. Journal of Thermal Analysis and Calorimetry 1–12. doi:10.1007/s10973-020-10261-5.
  • Khanafer, K., K. Vafai, and M. Lightstone. 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46 (19):3639–53. doi:10.1016/S0017-9310(03)00156-X.
  • Li, Q., Y. Xuan, and J. Wang. 2005. Experimental investigations on transport properties of magnetic fluids. Experimental Thermal and Fluid Science 30 (2):109–16. doi:10.1016/j.expthermflusci.2005.03.021.
  • M’hamed, B., N. A. C. Sidik, M. N. A. W. M. Yazid, R. Mamat, G. Najafi, and G. Kefayati. 2016. A review on why researchers apply external magnetic field on nanofluids. International Communications in Heat and Mass Transfer 78:60–67. doi:10.1016/j.icheatmasstransfer.2016.08.023.
  • Malvandi, A., and D. Ganji. 2014a. Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel. Journal of Magnetism and Magnetic Materials 362:172–79. doi:10.1016/j.jmmm.2014.03.014.
  • Malvandi, A., and D. Ganji. 2014b. Magnetohydrodynamic mixed convective flow of Al2O3–water nanofluid inside a vertical microtube. Journal of Magnetism and Magnetic Materials 369:132–41. doi:10.1016/j.jmmm.2014.06.037.
  • Moravej, M., M.Vahabzadeh Bozorg, Y. Guan, L. K. B. Li, M. H. Doranehgard, K. Hong, and Q. Xiong. 2020. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustainable Energy Technologies and Assessments 40:100783. doi:10.1016/j.seta.2020.100783.
  • Nguyen, Q., D. Bahrami, R. Kalbasi, and Q. V. Bach. 2020. Nanofluid flow through microchannel with a triangular corrugated wall: Heat transfer enhancement against entropy generation intensification. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.6705.
  • Rashidi, M., S. Abelman, and N. F. Mehr. 2013. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer 62:515–25. doi:10.1016/j.ijheatmasstransfer.2013.03.004.
  • Rashidi, M., N. Kavyani, and S. Abelman. 2014. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. International Journal of Heat and Mass Transfer 70:892–917. doi:10.1016/j.ijheatmasstransfer.2013.11.058.
  • Rashidi, S., M. Bovand, J. Esfahani, H. Öztop, and R. Masoodi. 2015a. Control of wake structure behind a square cylinder by magnetohydrodynamics. Journal of Fluids Engineering 137 (6). doi: 10.1115/1.4029633.
  • Rashidi, S., M. Dehghan, R. Ellahi, M. Riaz, and M. Jamal-Abad. 2015b. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. Journal of Magnetism and Magnetic Materials 378:128–37. doi:10.1016/j.jmmm.2014.11.020.
  • Rashidi, S., and J. Esfahani. 2015. The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel. Journal of Magnetism and Magnetic Materials 391:5–11. doi:10.1016/j.jmmm.2015.04.095.
  • Rashidi, S., J. A. Esfahani, and M. Maskaniyan. 2017. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. Journal of Magnetism and Magnetic Materials 439:358–72. doi:10.1016/j.jmmm.2017.05.014.
  • Reddy, G. J., M. Kumar, B. Kethireddy, and A. J. Chamkha. 2018. Colloidal study of unsteady magnetohydrodynamic couple stress fluid flow over an isothermal vertical flat plate with entropy heat generation. Journal of Molecular Liquids 252:169–79. doi:10.1016/j.molliq.2017.12.106.
  • Sheikholeslami, M., R. Ellahi, H. Ashorynejad, G. Domairry, and T. Hayat. 2014. Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. Journal of Computational and Theoretical Nanoscience 11 (2):486–96. doi:10.1166/jctn.2014.3384.
  • Sheikholeslami, M., and D. D. Ganji. 2014. Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia Iranica 21:203–12.
  • Sheikholeslami, M., M. Gorji-Bandpay, and D. Ganji. 2012. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. International Communications in Heat and Mass Transfer 39 (7):978–86. doi:10.1016/j.icheatmasstransfer.2012.05.020.
  • Sheikholeslami, M., M. Hatami, and D. Ganji. 2013. Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technology 246:327–36. doi:10.1016/j.powtec.2013.05.030.
  • Sheikholeslami, M., M. Mustafa, and D. Ganji. 2015. Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation. Iranian Journal of Science and Technology (Sciences) 39:433–40.
  • Sheikholeslami, M., and H. B. Rokni. 2017. Simulation of nanofluid heat transfer in presence of magnetic field: A review. International Journal of Heat and Mass Transfer 115:1203–33. doi:10.1016/j.ijheatmasstransfer.2017.08.108.
  • Zeeshan, A., R. Ellahi, and M. Hassan. 2014. Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium. The European Physical Journal Plus 129 (12):261. doi:10.1140/epjp/i2014-14261-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.