587
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Preparation and fabrication of NiCo coated TiO2-NTs for hydrogen evolution

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3406-3417 | Received 29 Sep 2020, Accepted 24 Feb 2021, Published online: 12 Mar 2021

References

  • Aijaz, A., J. Masa, C. Rösler, W. Xia, P. Weide, R. A. Fischer, W. Schuhmann, and M. Muhler. 2017. Metal-organic framework derived carbon nanotube grafted cobalt/carbon polyhedra grown on nickel foam: An efficient 3d electrode for full water splitting. ChemElectroChem 4:188–93. doi:10.1002/celc.201600452.
  • Ali, Y., V. T. Nguyen, N. A. Nguyen, S. Shin, and H. S. Choi. 2019. Transition-metal-based NiCoS/C-dot nanoflower as a stable electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy 44:8214–22. doi:10.1016/j.ijhydene.2019.01.297.
  • Bachvarov, V., E. Lefterova, and R. Rashkov. 2016. Electrodeposited NiFeCo and NiFeCoP alloy cathodes for hydrogen evolution reaction in alkaline medium. International Journal of Hydrogen Energy 41:12762–71. doi:10.1016/J.IJHYDENE.2016.05.164.
  • Bai, A., and C. C. Hu. 2002. Effects of electroplating variables on the composition and morphology of nickel-cobalt deposits plated through means of cyclic voltammetry. Electrochimica Acta 47:3447–56. doi:10.1016/S0013-4686(02)00281-5.
  • Baran, E., and B. Yazıcı. 2016. Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production. International Journal of Hydrogen Energy 41:2498–511. doi:10.1016/j.ijhydene.2015.12.028.
  • Birry, L., and A. Lasia. 2004. Studies of the hydrogen evolution reaction on raney nickel–molybdenum electrodes. Journal of Applied Electrochemistry 34:735–49. doi:10.1023/B:JACH.0000031161.26544.6a.
  • Børresen, B., G. Hagen, and R. Tunold. 2002. Hydrogen evolution on RuxTi1−xO2 in 0.5 M H2SO4. Electrochimica acta 47:1819–27. doi:10.1016/S0013-4686(02)00005-1.
  • Brug, G., A. Van Den Eeden, M. Sluyters-Rehbach, and J. Sluyters. 1984. The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 176:275–95. doi:10.1016/S0022-0728(84)80324-1.
  • Callejas, J. F., C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, and C. Synthesis. 2016. Properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chemistry Material 28:6017–44. doi:10.1021/acs.chemmater.6b02148.
  • Chen, X., S. Shen, L. Guo, and S. S. Mao. 2010. Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 110:6503–70. doi:10.1021/cr1001645.
  • Darband, G. B., M. Aliofkhazraei, A. S. Rouhaghdam, and M. A. Kiani. 2019. Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Applied Surface Science 465:846–62. doi:10.1016/J.APSUSC.2018.09.204.
  • Domínguez-Crespo, M. A., E. Ramírez-Meneses, A. M. Torres-Huerta, V. Garibay-Febles, and K. Philippot. 2012. Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. International Journal of Hydrogen Energy 37:4798–811. doi:10.1016/J.IJHYDENE.2011.12.109.
  • Döner, A., R. Solmaz, and G. Kardaş. 2011. Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution. International Journal of Hydrogen Energy 36:7391–97. doi:10.1016/j.ijhydene.2011.03.083.
  • Duan, J., S. Chen, and C. Zhao. 2018. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nature Communications 283 (1):15341. doi:10.1016/j.electacta.2018.07.046.
  • Dutta, S. 2014. A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry 20 (4):1148–56. doi:10.1016/J.JIEC.2013.07.037.
  • Farsak, M., and G. Kardaş. 2019. Effect of current change on iron-copper-nickel coating on nickel foam for hydrogen production. International Journal of Hydrogen Energy 44 (27):14151–56. doi:10.1016/J.IJHYDENE.2018.07.141.
  • Gómez, E., J. Ramirez, and E. Vallés. 1998. Electrodeposition of Co-Ni alloys. Journal of Applied Electrochemistry 28:71–79. doi:10.1023/A1003201919054.
  • Gomez, M. J., E. A. Franceschini, and G. I. Lacconi. 2018. Ni and NixCoy Alloys Electrodeposited on Stainless Steel AISI 316L for Hydrogen Evolution Reaction. Electrocatalysis 9:459–70. doi:10.1007/s12678-018-0463-5.
  • Hou, W., B. Zheng, F. Qi, J. He, W. Zhang, and Y. Chen. 2016. Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis. International Journal of Hydrogen Energy 28:6934–41. doi:10.1021/acs.chemmater.6b02610.
  • Ji, Y., L. Yang, X. Ren, G. Cui, X. Xiong, and X. Sun. 2018. Full Water Splitting Electrocatalyzed by NiWO 4 Nanowire Array. ACS Sustainable Chemistry & Engineering 6 (8):9555–59. doi:10.1021/acssuschemeng.8b01841.
  • Khudhair, D., A. Bhatti, Y. Li, H. A. Hamedani, H. Garmestani, P. Hodgson, and S. Nahavandi. 2016. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Materials Science and Engineering: C 59:1125–42. doi:10.1016/j.msec.2015.10.042.
  • Koca, M. B., G. Gümüşgöz Çelik, G. Kardaş, and B. Yazıcı. 2019. NiGa modified carbon-felt cathode for hydrogen production. International Journal of Hydrogen Energy 44 (27):14157–63. doi:10.1016/J.IJHYDENE.2018.09.031.
  • Kullaiah, R., L. Elias, and A. C. Hegde. 2018. Effect of TiO2 nanoparticles on hydrogen evolution reaction activity of Ni coatings. International Journal of Minerals, Metallurgy and Materials 25:472–79. doi:10.1007/s12613-018-1593-8.
  • Lačnjevac, U., V. Radmilović, V. Radmilović, and N. Krstajić. 2015. RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution. Electrochimica Acta 168:178–90. doi:10.1016/j.electacta.2015.04.012.
  • Li, M., H. Liu, Y. Song, and Z. Li. 2019. TiO2 homojunction with Au nanoparticles decorating as an efficient and stable electrocatalyst for hydrogen evolution reaction. Materials Characterization 151:286–91. doi:10.1016/J.MATCHAR.2019.03.025.
  • Li, X., X. Shang, X.-Y. Zhang, B. Dong, K.-L. Yan, Y.-R. Liu, G.-Q. Han, J.-Q. Chi, Y.-M. Chai, and C.-G. Liu. 2018. Ni-Se nanostructrures dependent on different solvent as efficient electrocatalysts for hydrogen evolution reaction in alkaline media. Materials Chemistry and Physics 207:389–95. doi:10.1016/J.MATCHEMPHYS.2018.01.006.
  • Liang, H., C. Yang, S. Ji, N. Jiang, X. An, X. Yang, H. Wang, and R. Wang. 2019. Cobalt-nickel phosphides@carbon spheres as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Catal. Commun 124:1–5. doi:10.1016/J.CATCOM.2019.02.012.
  • Łosiewicz, B., A. Budniok, E. Rówiński, E. Łągiewka, and A. Lasia. 2004. The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modified nickel electrodes. International Journal of Hydrogen Energy 29:145–57. doi:10.1016/S0360-3199(03)00096-X.
  • Menezes, P. W., A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, and M. Driess. 2017. Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catalysis 7 (1):103–09. doi:10.1021/acscatal.6b02666.
  • Mert, M. E., and G. Kardaş. 2011. Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium. Journal of Alloys and Compounds 509 (37):9190–94. doi:10.1016/j.jallcom.2011.06.107.
  • Mert, M. E., B. D. Mert, G. Kardaş, and B. Yazıcı. 2017. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium. Applied Surface Science 423:704–15. doi:10.1016/J.APSUSC.2017.06.216.
  • Nady, H., and M. Negem. 2018. Electroplated Zn–Ni nanocrystalline alloys as an efficient electrocatalyst cathode for the generation of hydrogen fuel in acid medium. International Journal of Hydrogen Energy 43:4942–50. doi:10.1016/J.IJHYDENE.2018.01.119.
  • Navarro-Flores, E., Z. Chong, and S. Omanovic. 2005. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. Journal of Molecular Catalysis A: Chemical 226:179–97. doi:10.1016/J.MOLCATA.2004.10.029.
  • Nikolic, V. M., S. L. Maslovara, G. S. Tasic, T. P. Brdaric, P. Z. Lausevic, B. B. Radak, and M. P. Marceta Kaninski. 2015. Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni–Co–Mo based ionic activators. Applied Catalysis B: Environmental 179:88–94. doi:10.1016/J.APCATB.2015.05.012.
  • Oriňáková, R., A. Oriňák, G. Vering, I. Talian, R. M. Smith, and H. F. Arlinghaus. 2008. Influence of pH on the electrolytic deposition of Ni-Co films. Thin Solid Films 516:3045–50. doi:10.1016/j.tsf.2007.12.081.
  • Pan, Y., W. Hu, D. Liu, Y. Liu, and C. Liu. 2015a. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 3 (24):13087–94. doi:10.1039/C5TA02128F.
  • Pan, Y., N. Yang, Y. Chen, Y. Lin, Y. Li, Y. Liu, and C. Liu. 2015b. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. Journal of Power Sources 297:45–52. doi:10.1016/J.JPOWSOUR.2015.07.077.
  • Pierozynski, B., and T. Mikolajczyk. 2016. Cathodic evolution of hydrogen on platinum-modified nickel foam catalyst. Electrocatalysis 7 (2):121–26. doi:10.1007/s12678-015-0290-x.
  • Raj, A., and S. Arumainathan. 2019. Comparative study of hydrogen evolution behavior of nickel cobalt and nickel cobalt magnesium alloy film prepared by pulsed electrodeposition. Vacuum 160:461–66. doi:10.1016/j.vacuum.2018.12.006.
  • Regonini, D., C. R. Bowen, A. Jaroenworaluck, and R. Stevens. 2013. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports 74:377–406. doi:10.1016/j.mser.2013.10.001.
  • Rosalbino, F., S. Delsante, G. Borzone, and E. Angelini. 2008. Electrocatalytic behaviour of Co–Ni–R (R = Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium. International Journal of Hydrogen Energy 33:6696–703. doi:10.1016/J.IJHYDENE.2008.07.125.
  • Şahin, E. A., B. Doğru Mert, S. T. Döşlü, G. Kardaş, and B. Yazıcı. 2012. Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes. International Journal of Hydrogen Energy 37:11625–31. doi:10.1016/J.IJHYDENE.2012.05.059.
  • Shalom, M., D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger, and M. Antonietti. 2015. Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A 3 (15):8171–77. doi:10.1039/C5TA00078E.
  • Shang, X., J.-Q. Chi, -S.-S. Lu, B. Dong, -Z.-Z. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu. 2011. Hierarchically three-level Ni3(VO4)2@NiCo2O4 nanostructure based on nickel foam towards highly efficient alkaline hydrogen evolution. Electrochimica Acta 509:9190–94. doi:10.1016/j.jallcom.2011.06.107.
  • Shetty, A. R., and A. C. Hegde. 2018. Effect of TiO2 on electrocatalytic behavior of Ni-Mo alloy coating for hydrogen energy. Materials Science for Energy Technologies 1:97–105. doi:10.1016/J.MSET.2018.06.003.
  • Solmaz, R., A. Salcı, H. Yüksel, M. Doğrubaş, and G. Kardaş. 2017. Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis. International Journal of Hydrogen Energy 42 (4):2464–75. doi:10.1016/J.IJHYDENE.2016.07.221.
  • Uzal, H., A. Döner, and H. Bayrakçeken. 2020. Hydrogen evolution behavior of nickel coated TiO2. International Journal of Hydrogen Energy 45 (60):34879–34887. doi:10.1016/j.ijhydene.2019.12.138.
  • Wang, F., Y. Li, T. A. Shifa, K. Liu, F. Wang, Z. Wang, P. Xu, Q. Wang, and J. He. 2016. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angewandte Chemie International Edition 55:6919–24. doi:10.1002/anie.201602802.
  • Wang, M., Z. Wang, X. Yu, and Z. Guo. 2015. Facile one-step electrodeposition preparation of porous Ni-Mo film as electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy 40:2173–81. doi:10.1016/j.ijhydene.2014.12.022.
  • Wu, H., D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu. 2014. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochimica Acta 116:129–36. doi:10.1016/j.electacta.2013.10.092.
  • Xie, Z., P. He, L. Du, F. Dong, K. Dai, and T. Zhang. 2013. Comparison of four nickel-based electrodes for hydrogen evolution reaction. Electrochimica Acta 88:390–94. doi:10.1016/J.ELECTACTA.2012.10.057.
  • Yang, J., D. Wang, H. Han, and C. Li. 2013. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research 46:1900–09. doi:10.1021/ar300227e.
  • Yang, X., G. Wang, D. Zhang, H. Zhang, Q. Yan, M. Zhu, K. Ye, K. Zhu, K. Cheng, J. Yan, et al. 2019. Three-demensional Ni–Co–NiCo2O4/NF as an efficient electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy 44:226–32. doi:10.1016/j.ijhydene.2018.03.050.
  • Yüksel, H., A. Özbay, R. Solmaz, and M. Kahraman. 2017. Fabrication and characterization of three-dimensional silver nanodomes: Application for alkaline water electrolysis. International Journal of Hydrogen Energy 42:2476–84. doi:10.1016/J.IJHYDENE.2016.06.218.
  • Zhang, B., C. Xiao, S. Xie, J. Liang, X. Chen, and Y. Tang. 2016. Iron–Nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater 28 (19):6934–41. doi:10.1021/acs.chemmater.6b02610.
  • Zhang, B., X. Zhang, Y. Wei, L. Xia, C. Pi, H. Song, Y. Zheng, B. Gao, J. Fu, and P. K. Chu. 2019. General synthesis of NiCo alloy nanochain arrays with thin oxide coating: A highly efficient bifunctional electrocatalyst for overall water splitting, J. Journal of Alloys and Compounds 797:1216–23. doi:10.1016/j.jallcom.2019.05.036.
  • Zhang, Y., H. K. Bilan, and E. Podlaha. 2019. Enhancing the hydrogen evolution reaction with Ni-W-TiO2 composites. Electrochemistry Communications 44:14151–56. doi:10.1016/j.ijhydene.2018.07.141.
  • Zhu, W., W. Chen, H. Yu, Y. Zeng, F. Ming, H. Liang, and Z. Wang. 2020. NiCo/ NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents. Applied Catalysis B: Environmental 278:119326. doi:10.1016/j.apcatb.2020.119326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.