276
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Parametric analysis of thermal behavior of the building with phase change materials for passive cooling

ORCID Icon, &
Pages 5627-5639 | Received 28 Jul 2020, Accepted 23 Mar 2021, Published online: 04 Apr 2021

References

  • Agyenim, F., N. Hewitt, P. Eames, and M. Smyth. 2010. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 14 (2):615–28. doi:10.1016/j.rser.2009.10.015.
  • Akeiber, H., P. Nejat, M. Z. A. Majid, M. A. Wahid, F. Jomehzadeh, I. Zeynali Famileh, and S. A. Zaki. 2016. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews 60:1470–97. doi:10.1016/j.rser.2016.03.036.
  • Alam, M., J. Sanjayan, P. X. W. Zou, S. Ramakrishnan, and J. Wilson. 2017. A comparative study on the effectiveness of passive and free cooling application methods of phase change materials for energy efficient retrofitting in residential buildings. Procedia Engineering 180:993–1002. doi:10.1016/j.proeng.2017.04.259.
  • Alizadeh, M., and S. M. Sadrameli. 2016. Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review. Renewable and Sustainable Energy Reviews 58:619–45. doi:10.1016/j.rser.2015.12.168.
  • Athienitis, A. K., C. Liu, D. Hawes, D. Banu, and D. Feldman. 1997. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment 32 (5):405–10. doi:10.1016/S0360-1323(97)00009-7.
  • Baetens, R., B. P. Jelle, and A. Gustavsen. 2010. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings 42 (9):361–1368. doi:10.1016/j.enbuild.2010.03.026.
  • Faraj, K., M. Khaled, J. Faraj, F. Hachem, and C. Castelain. 2019. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews 109579. doi:10.1016/j.rser.2019.109579.
  • Faraji, M. 2014. Numerical computation of solar heat storage in phase change material/concrete wall. International Journal of Energy and Environment 5 (3):353–60. www.ijee.ieefoundation.org/vol5/issue3/IJEE_07_v5n3.pdf.
  • Fathipour, R., and A. Hadidi. 2017. Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran. Energy 134:67–180. doi:10.1016/j.energy.2017.06.009.
  • Geetha, N. B., and R. Velraj. 2012. Novel concept of PCM based thermal storage integration in active and passive cooling systems for energy management in buildings. Energy Engineering 110 (1):41–66. doi:10.1080/01998595.2013.10594635.
  • Gobinath, S., G. Senthilkumar, and N. Beemkumar. 2018. Comparative study of room temperature control in buildings with and without the use of PCM in walls. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (14):1765–71. doi:10.1080/15567036.2018.1486910.
  • Hasan, M. I., H. O. Basher, and A. O. Shdhan. 2018. Experimental investigation of phase change materials for insulation of residential buildings. Sustainable Cities and Society 36:42–58. doi:10.1016/j.scs.2017.10.009.
  • Heier, J., C. Bales, and V. Martin. 2015. Combining thermal energy storage with buildings – A review. Renewable and Sustainable Energy Reviews 42:1305–25. doi:10.1016/j.rser.2014.11.031.
  • JianShe, H., Y. Chao, Z. Xu, Z. Jiao, and D. JinXing. 2019. Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (1):86–93. doi:10.1080/15567036.2018.1496199.
  • Karaipekli, K., A. Sarı, and K. Kaygusuz. 2008. Thermal properties and long-term reliability of capric acid/lauric acid and capric acid/myristic acid mixtures for thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30:1248–58. doi:10.1080/15567030701258295.
  • Kim, H. B., M. Mae, Y. Choi, and T. Kiyota. 2017. Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials. Energy and Buildings 152:524–33. doi:10.1016/j.enbuild.2017.07.076.
  • Li, D., Y. Zheng, C. Liu, and G. Wu. 2015. Numerical analysis on thermal performance of roof contained PCM of a single residential building. Energy Conversion and Management 100:147–56. doi:10.1016/j.enconman.2015.05.014.
  • Li, S., K. Zhong, Y. Zhou, and X. Zhang. 2014. Comparative study on the dynamic heat transfer characteristics of PCM-filled glass window and hollow glass window. Energy and Buildings 85:483–92. doi:10.1016/j.enbuild.2014.09.054.
  • Parameshwaran, R., S. Kalaiselvam, S. Harikrishnan, and A. Elayaperumal. 2012. Sustainable thermal energy storage technologies for buildings: A review. Renewable and Sustainable Energy Reviews 16 (5):2394–433. doi:10.1016/j.rser.2012.01.058.
  • Pasupathy, A., and R. Velraj. 2008. Effect of double layer phase change material in building roof for year round thermal management. Energy and Buildings 40 (3):193–203. doi:10.1016/j.enbuild.2007.02.016.
  • Ramakrishnan, S., X. Wang, J. Sanjayan, and J. Wilson. 2017. Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Applied Energy 207:654–64. doi:10.1016/j.apenergy.2017.05.144.
  • Reddy, K. S., V. Mudgal, and T. K. Mallick. 2017. Thermal performance analysis of multi-phase change material layer-integrated building roofs for energy efficiency in built-environment. Energies 10 (9):1367. doi:10.3390/en10091367.
  • Regin, A. F., S. C. Solanki, and J. S. Saini. 2008. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renewable and Sustainable Energy Reviews 12 (9):2438–58. doi:10.1016/j.rser.2007.06.009.
  • Saffari, M., A. De Gracia, S. Ushak, and L. Cabeza. 2016. Passive cooling of buildings with phase change materials using whole - building energy simulation tools: A review. Renewable and Sustainable Energy Reviews 80:1239–55. doi:10.1016/j.rser.2017.05.139.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13 (2):318–45. doi:10.1016/j.rser.2007.10.005.
  • Song, M., F. Niu, N. Mao, Y. Hu, and S. Deng. 2018. Review on building energy performance improvement using phase change materials. Energy and Buildings 158:776–93. doi:10.1016/j.enbuild.2017.10.066.
  • Valizadeh, S., M. Ehsani, and M. Torabi Angji. 2019. Development and thermal performance of wood-HPDE- PCM nanocapsule floor for passive cooling in building. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (17):1–14. doi:10.1080/15567036.2018.1550125.
  • Vicente, R., and T. Silva. 2014. Brick masonry walls with PCM macrocapsules: An experimental approach. Applied Thermal Engineering 67 (1–2):24–34. doi:10.1016/j.applthermaleng.2014.02.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.