174
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Modeling and optimization of stability aspects for water diesel emulsified fuel using response surface methodology

ORCID Icon, ORCID Icon, &
Pages 3055-3078 | Received 04 Nov 2020, Accepted 05 Apr 2021, Published online: 25 Apr 2021

References

  • Abu-Zaid, M. 2004. An experimental study of the evaporation characteristics of emulsified liquid droplets. Heat and Mass Transfer 40 (9):737–41. doi:10.1007/s00231-003-0473-5.
  • Ashok, B., A. K. Jeevanantham, K. Nanthagopal, B. Saravanan, M.S. Kumar, A. Johny, A. Mohan, M.U. Kaisan, S. Abubakar. 2019. An experimental analysis on the effect of n-pentanol-Calophyllum inophyllum biodiesel binary blends in CI engine characteristics. Energy 173:290–305. doi:10.1016/j.energy.2019.02.092.
  • Basha, J. S., and R. B. Anand. 2011. Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. Journal of Renewable and Sustainable Energy 3 (2):023106. doi:10.1063/1.3575169.
  • Basha, J. S., and R. B. Anand. 2014. Performance, emission and combustion characteristics of a diesel engine using carbon nanotubes blended jatropha methyl ester emulsions. Alexandria Engineering Journal 53 (2):259–73. doi:10.1016/j.aej.2014.04.001.
  • Baweja, S., A. Trehan, and R. Kumar. 2021. Combustion, performance, and emission analysis of a CI engine fueled with mustard oil biodiesel blended in diesel fuel. Fuel 292:120346. doi:10.1016/j.fuel.2021.120346.
  • Bazooyar, B., A. Ghorbani, and A. Shariati. 2011. Combustion performance and emissions of petrodiesel and biodiesels based on various vegetable oils in a semi industrial boiler. Fuel 90 (10):3078–92. doi:10.1016/j.fuel.2011.05.025.
  • Chen, C. M., C. H. Lu, C. H. Chang, Y. M. Yang, and J. R. Maa. 2000. Influence of pH on the stability of oil-in-water emulsions stabilized by a splittable surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 170 (2–3):173–79. doi:10.1016/S0927-7757(00)00480-5.
  • Chen, G., and D. Tao. 2005. An experimental study of stability of oil-water emulsion. Fuel Processing Technology 86 (5):499–508. doi:10.1016/j.fuproc.2004.03.010.
  • Datta, A., and B. K. Mandal. 2017. A numerical study on the performance, combustion and emission parameters of a compression ignition engine fuelled with diesel, palm stearin biodiesel and alcohol blends. Clean Techn Environ Policy 19 (1):157–73. doi:10.1007/s10098-016-1202-3.
  • Debnath, B. K., U. K. Saha, and N. Sahoo. 2015. A comprehensive review on the application of emulsions as an alternative fuel for diesel engines. Renew Sustain Energy Rev 42:196–211. doi:10.1016/j.rser.2014.10.023.
  • Dey, P., and S. Ray. 2020. Comparative analysis of waste vegetable oil versus transesterified waste vegetable oil in diesel blend as alternative fuels for compression ignition engine. Clean Techn Environ Policy 22 (7):1517–30. doi:10.1007/s10098-020-01892-1.
  • Dinesha, P., S. Kumar, and M. A. Rosen. 2019. Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends. Energy 179:928–37. doi:10.1016/j.energy.2019.05.071.
  • Ettefaghi, E., B. Ghobadian, A. Rashidi, G. Najafi, M.H. Khoshtaghaza, M. Rashtchi, S. Sadeghian S. 2018. A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renewable Energy 125:64–72. doi:10.1016/j.renene.2018.01.086.
  • Hasannuddin, A. K., J. Y. Wira, R. Srithar, S. Sarah, M.I. Ahmad, S.A. Aizam, M.A. Aiman, M. Zahari, S. Watanabe, M.A. Azrin, S.S. Mohd. 2016. Effect of emulsion fuel on engine emissions–A review. Clean Technologies and Environmental Policy 18:17–32. doi:10.1007/s10098-015-0986-x.
  • Hasannuddin, A. K., W. J. Yahya, S. Sarah, A. M. Ithnin, S. Syahrullail, D.A. Sugeng, I.F. Razak, A.Y. Abd Fatah, W.S. Aqma, A.H. Rahman, N.A. Ramlan. 2018. Performance, emissions and carbon deposit characteristics of diesel engine operating on emulsion fuel. Energy 142:496–506. doi:10.1016/j.energy.2017.10.044.
  • Hatami, M., M. C. M. Cuijpers, and M. D. Boot. 2015. Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a design of experiment (DoE) approach. Energy Conversion and Management 106:1057–70. doi:10.1016/j.enconman.2015.10.040.
  • Hirkude, J. B., and A. S. Padalkar. 2014. Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology. Fuel 119:266–73. doi:10.1016/j.fuel.2013.11.039.
  • Jhalani, A., D. Sharma, S. L. Soni, P.K. Sharma, S. Sharma. 2019a. A comprehensive review on water-emulsified diesel fuel: Chemistry, engine performance and exhaust emissions. Environmental Science and Pollution Research 26 (5):4570–87. doi:10.1007/s11356-018-3958-y.
  • Jhalani, A., D. Sharma, S. L. Soni, and P. K. Sharma. 2019b. Effects of process parameters on performance and emissions of a water-emulsified diesel-fueled compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2019.1669739.
  • Jiaqiang, E., Z. Zhang, J. Chen, M. H. Pham, X. Zhao, Q. Peng, B. Zhang, Z. Yin. 2018. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Conversion and Management 169:194–205. doi:10.1016/j.enconman.2018.05.073.
  • Khatri, D., and R. Goyal. 2020. Effects of silicon dioxide nanoparticles on the performance and emission features at different injection timings using water diesel emulsified fuel. Energy Conversion and Management 205:112379. doi:10.1016/j.enconman.2019.112379.
  • Khatri, D., R. Goyal, A. Darad, A. Jain, S. Rawat, A. Khan, A.T. Johnson. 2019. Investigations for the optimal combination of zinc oxide nanoparticle-diesel fuel with optimal compression ratio for improving performance and reducing the emission features of variable compression ratio diesel engine. Clean Technologies and Environmental Policy 21 (7):1485–98. doi:10.1007/s10098-019-01719-8.
  • Kumar, N., H. Raheman, and R. Machavaram. 2019. Performance of a diesel engine with water emulsified diesel prepared with optimized process parameters. International Journal of Green Energy 16 (9):687–701. doi:10.1080/15435075.2019.1618309.
  • Kundu, P., A. Agrawal, H. Mateen, and I. M. Mishra. 2013. Stability of oil-in-water macroemulsion with anionic surfactant: Effect of electrolytes and temperature. Chemical Engineering Science 102:176–85. doi:10.1016/j.ces.2013.07.050.
  • Kundu, P., V. Kumar, and I. M. Mishra. 2015a. Modeling the steady-shear rheological behavior of dilute to highly concentrated oil-in-water (o/w) emulsions: Effect of temperature, oil volume fraction and anionic surfactant concentration. Journal of Petroleum Science and Engineering 129:189–204. doi:10.1016/j.petrol.2015.03.008.
  • Kundu, P., V. Paul, V. Kumar, and I. M. Mishra. 2015b. Formulation development, modeling and optimization of emulsification process using evolving RSM assisted hybrid ANN-GA framework. Chemical Engineering Research & Design 104:773–90. doi:10.1016/j.cherd.2015.10.025.
  • Lin, C. Y., and K. H. Wang. 2003. The fuel properties of three-phase emulsions as an alternative fuel for diesel engines. Fuel 82 (11):1367–75. doi:10.1016/S0016-2361(03)00021-8.
  • Lin, C. Y., and S. M. Tsai. 2018. Emulsification characteristics of nano-emulsions of solketal in diesel prepared using microwave irradiation. Fuel (2018) (221):165–70. doi:10.1016/j.fuel.2018.02.091.
  • Mathew, B. C., J. Thangaraja, and A. Sivaramakrishna. 2019. Combustion, performance and emission characteristics of blends of methyl esters and modified methyl esters of karanja and waste cooking oil on a turbocharged CRDI engine. Clean Techn Environ Policy 21 (9):1791–807. doi:10.1007/s10098-019-01750-9.
  • Mondal, P. K., and B. K. Mandal. 2019. A comprehensive review on the feasibility of using water emulsified diesel as a CI engine fuel. Fuel 237:937–60. doi:10.1016/j.fuel.2018.10.076.
  • Nadeem, M., C. Rangkuti, K. Anuar, M.R. Haq, I.B. Tan, S.S. Shah. 2006. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants. Fuel 85 (14–15):2111–19. doi:10.1016/j.fuel.2006.03.013.
  • Nayyar, A., D. Sharma, S. L. Soni, and A. Mathur. 2017. Characterization of n-butanol diesel blends on a small size variable compression ratio diesel engine: Modeling and experimental investigation. Energy Conversion and Management 150:242–58. doi:10.1016/j.enconman.2017.08.031.
  • Nour, M., A. M. Attia, and S. A. Nada. 2019. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Conversion and Management 185:313–29. doi:10.1016/j.enconman.2019.01.105.
  • Orafidiya, L. O., and F. A. Oladimeji. 2002. Determination of the required HLB values of some essential oils. International Journal of Pharmaceutics 237(1–2):241–49. 2002. doi:10.1016/S0378-5173(02)00051-0.
  • Pandian, M., S. P. Sivapirakasam, and M. Udayakumar. 2011. Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Applied Energy 88 (8):2663–2276. doi:10.1016/j.apenergy.2011.01.069.
  • Peng, L. C., C. H. Liu, C. C. Kwan, and K. F. Huang. 2010. Optimization of water-in-oil nano emulsions by mixed surfactants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 370 (1–3):136–42. doi:10.1016/j.colsurfa.2010.08.060.
  • Piloto-Rodriguez, R., Y. Diaz, E. A. Melo-Espinosa, Y. Sánchez-Borroto, L. Goyos, L. Canoira, M. Lapuerta. 2020. Conversion of fatty acids distillates into biodiesel: Engine performance and environmental effects. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42(4):387–98. 2020. doi:10.1080/15567036.2019.1587085.
  • Şahin, Z., M. Tuti, and O. Durgun. 2014. Experimental investigation of the effects of water adding to the intake air on the engine performance and exhaust emissions in a DI automotive diesel engine. Fuel 115:884–95. doi:10.1016/j.fuel.2012.10.080.
  • Pratap, B., R. Goyal, M. Deo, N. Chaudhary, P. Chauhan, A. Chauhan. 2019. Modelling and experimental study on performance and emission characteristics of citrullus colocynthis (thumba oil) diesel fuelled operated variable compression ratio diesel engine. Energy 182:349–68. doi:10.1016/j.energy.2019.05.164.
  • Saravanan, A., M. Murugan, M. S. Reddy, and S. Parida. 2020. Performance and emission characteristics of variable compression ratio CI engine fueled with dual biodiesel blends of Rapeseed and Mahua. Fuel 263:116751. doi:10.1016/j.fuel.2019.116751.
  • Song, M. G., S. H. Jho, J. Y. Kim, and J. D. Kim. 2000. Rapid evaluation of water-in-oil (w/o) emulsion stability by turbidity ratio measurements. Journal of Colloid and Interface Science 230 (1):213–15. doi:10.1006/jcis.2000.7090.
  • Velev, O. D., T. D. Gurkov, S. K. Chakarova, B. I. Dimitrova, I. B. Ivanov, and R. P. Borwankar. 1994. Experimental investigations on model emulsion systems stabilized with non-ionic surfactant blends. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 83 (1):43–55. doi:10.1016/0927-7757(93)02639-V.
  • Vellaiyan, S., and K. S. Amirthagadeswaran. 2016a. The role of water-in-diesel emulsion and its additives on diesel engine performance and emission levels: A retrospective review. Alexandria Eng J 55 (3):2463–72. doi:10.1016/j.aej.2016.07.021.
  • Vellaiyan, S., and K. S. Amirthagadeswaran. 2016b. Taguchi-grey relational-based multi-response optimization of the water-in-diesel emulsification process. Journal of Mechanical Science and Technology 30 (3):1399–404. doi:10.1007/s12206-016-0247-x.
  • Vigneswaran, R., K. Annamalai, B. Dhinesh, and R. Krishnamoorthy. 2018. Experimental investigation of unmodified diesel engine performance, combustion and emission with multipurpose additive along with water-in-diesel emulsion fuel. Energy Conversion and Management 172:370–80. doi:10.1016/j.enconman.2018.07.039.
  • Xue, J., T. E. Grift, and A. C. Hansen. 2011. Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15 (2):1098–116. doi:10.1016/j.rser.2010.11.016.
  • Yahaya Khan, M., Z. A. Abdul Karim, A. R. Aziz, and I. M. Tan. 2016. Experimental study on influence of surfactant dosage on micro explosion occurrence in water in diesel emulsion. Applied Mechanics and Materials 819:287–91. 10.4028/j.rser https://www.scientific.net/AMM.819.287.
  • Yusri, I. M., A. P. P. Abdul Majeed, R. Mamat, M. F. Ghazali, O. I. Awad, and W. H. Azmi. 2018. A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renew Sustain Energy Rev 90:665–86. doi:10.1016/j.rser.2018.03.095.
  • Yusri, I. M., R. Mamat, W. H. Azmi, A. I. Omar, M. A. Obed, and A. I. M. Shaiful. 2017. Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine. Energy Conversion and Management 133:178–95. doi:10.1016/j.enconman.2016.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.