662
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Deep learning approach for one-hour ahead forecasting of energy production in a solar-PV plant

ORCID Icon, ORCID Icon & ORCID Icon
Pages 10465-10480 | Received 03 Dec 2020, Accepted 25 Apr 2021, Published online: 07 May 2021

References

  • Abdel-Nasser, M., and K. Mahmoud. 2019. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Computing and Applications 31 (7):2727–40. doi:10.1007/s00521-017-3225-z.
  • Abyaneh, H. Z., A. M. Nia, M. B. Varkeshi, S. Marofi, and O. Kisi. 2011. Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration. Journal of Irrigation and Drainage Engineering 137 (5):280–86. doi:10.1061/(ASCE)IR.1943-4774.0000298.
  • Antonanzas, J., N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-pison, and F. Antonanzas-Torres. 2016. Review of photovoltaic power forecasting. Solar Energy 136:78–111. doi:10.1016/j.solener.2016.06.069.
  • Ayoubi, M. A., and L. C. Tai. 2012. Intelligent control of a large variable speed wind turbine. Journal of Solar Energy Engineering 134 (1):1–8. doi:10.1115/1.4004979.
  • Bamisile, O., A. Oluwasanmi, C. Ejiyi, N. Yimen, S. Obiora, and Q. Huang. 2021. Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. International Journal of Energy Research. doi:10.1002/er.6529.
  • Bamisile, O., A. Oluwasanmi, S. Obiora, E. Osei-Mensah, G. Asoronye, and Q. Huang. 2020. Application of deep learning for solar irradiance and solar photovoltaic multi-parameter forecast. Energy Sources, Part ARecovery Utilization and Environmental Effects.doi:10.1080/15567036.2020.1801903
  • Benmouiza, K., and A. Cheknane. 2019. Clustered ANFIS network using fuzzy C-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theoretical and Applied Climatology 137 (1–2):31–43. doi:10.1007/s00704-018-2576-4.
  • Da Fonseca, J. G. S., T. Oozeki, T. Takasihima, G. Koshimiu, Y. Uchida, and K. Ogimoto. 2012. Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. Progress in Photovoltaics: Research and Applications 20 (7):874–82. doi:10.1002/pip.1152.
  • Demers, F. 2005. Modelling and forecasting housing investment: The case of Canada. Staff Working Papers 05-41, Bank of Canada.
  • Erduman, A. 2020. a smart short-term solar power output prediction by artificial neural network. Electrical Engineering 102 (3):1441–49. doi:10.1007/s00202-020-00971-2.
  • Harrou, F., F. Kadri, and Y. Sun. 2020. Forecasting of photovoltaic solar power production using LSTM approach. Adv. Stat. Model. Forecast. Fault Detect. Renew. Energy Systems IntechOpen:London, UK: 2020. doi:10.5772/intechopen.91248.
  • Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9(8):1735–80.
  • Jang, J. S. R. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3):665–85. doi:10.1109/21.256541.
  • Karakuş, O., E. E. Kuruoǧlu, and M. A. Altinkaya. 2017. One-day ahead wind speed/power prediction based on polynomial autoregressive model. IET Renewable Power Generation 11 (11):1430–39. doi:10.1049/iet-rpg.2016.0972.
  • Konjic, T., A. Jahic, T. Konjić, A. Jahić, and J. Pihler. September 2016, Artificial Neural Network Approach to Photovoltaic System Power Output Forecasting.
  • Li, Z., S. M. Mahbobur Rahman, R. Vega, and B. Dong. 2016. A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies 9:1.
  • Liu, R., and L. Liu. 2019. Predicting housing price in china based on long short-term memory incorporating modified genetic algorithm. Soft Computing 23 (22):11829–38. doi:10.1007/s00500-018-03739-w.
  • Mathworks. 2020, Fuzzy C-means clustering [Online]. Accessed 1 May 2020 https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html
  • Mellit, A., A. Massi Pavan, and V. Lughi. 2014. Short-term forecasting of power production in a large-scale photovoltaic plant. Solar Energy 105:401–13. doi:10.1016/j.solener.2014.03.018.
  • Mellit, A., A. M. Pavan, E. Ogliari, S. Leva, and V. Lughi. 2020. Advanced methods for photovoltaic output power forecasting: A review. Applied Sciences 10:2. doi:10.3390/app10020487.
  • Nabiyev, V. V. 2012. Yapay Zekâ: İnsan-Bilgisayar Etkileşimi. Seçkin Yayıncılık. Turkey.
  • Ogliari, E., A. Dolara, G. Manzolini, and S. Leva. 2017. Physical and hybrid methods comparison for the day ahead PV output power forecast. Renewable Energy 113:11–21. doi:10.1016/j.renene.2017.05.063.
  • Park, I., H. S. Kim, J. Lee, J. H. Kim, C. H. Song, and H. K. Kim. 2019. Temperature prediction using the missing data refinement model based on a long short-term memory neural network. Atmosphere (Basel) 10 (11):1–16.
  • Pedro, H. T. C., and C. F. M. Coimbra. 2012. Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy 86 (7):2017–28. doi:10.1016/j.solener.2012.04.004.
  • REN21. 2020. Renewables 2020 Global Status Report.
  • Salman, A. G., Y. Heryadi, E. Abdurahman, and W. Suparta. 2018. Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting. Procedia Computer Science 135:89–98. doi:10.1016/j.procs.2018.08.153.
  • Sharadga, H., S. Hajimirza, and R. S. Balog. 2020. Time series forecasting of solar power generation for large-scale photovoltaic plants. Renewable Energy 150:797–807. doi:10.1016/j.renene.2019.12.131.
  • Tabari, H., O. Kisi, A. Ezani, and P. Hosseinzadeh Talaee. 2012. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology 444–445:78–89. doi:10.1016/j.jhydrol.2012.04.007.
  • Varınca, K. B., M. T. Gönüllü, M. Abuşka, E. Koç, M. C. Şenel, M. Yılmaz, F. Ç. Kılıç, I. Atilgan, K. M. Aksungur, M. Kurban, et al. 2012. Türkiye’de Günes Enerjisi Potansiyeli ve Bu Potansiyelin Kullanım Derecesi, Yöntemi ve Yaygınlıgı Üzerine Bir Arastırma. Muhendis Ve Makina 4 (42):33–54.
  • Wang, F., Z. Xuan, Z. Zhen, K. Li, T. Wang, and M. Shi. 2020. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Conversion and Management 212 (December 2019):112766. doi:10.1016/j.enconman.2020.112766.
  • Wu, Y. K., C. R. Chen, and H. Abdul Rahman. 2014. A novel hybrid model for short-term forecasting in PV power generation. International Journal of Photoenergy 2014:1–9. doi:10.1155/2014/569249.
  • Yang, C., A. A. Thatte, and L. Xie. 2015. Multitime-scale data-driven spatio-temporal forecast of photovoltaic generation. IEEE Transactions on Sustainable Energy 6 (1):104–12. doi:10.1109/TSTE.2014.2359974.
  • Yousif, J. H., H. A. Kazem, N. N. Alattar, and I. I. Elhassan. 2019. A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Studies in Thermal Engineering 13 (December 2018):100407. doi:10.1016/j.csite.2019.100407.
  • Zahroh, S., Y. Hidayat, R. S. Pontoh, A. S. Santoso, F. Sukono, and A. T. Bon. November 2019. Modeling and forecasting daily temperature in Bandung. Proceedings of the International Conference on Industrial Engineering and Operations Management,Riyadh, Saudi Arabia,406–12.
  • Zhang, B., J. L. Wu, and P. C. Chang. 2018. A multiple time series-based recurrent neural network for short-term load forecasting. Soft Computing 22 (12):4099–112. doi:10.1007/s00500-017-2624-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.