322
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Estimation of power output and thermodynamic analysis of standard and finned photovoltaic panels

ORCID Icon, ORCID Icon & ORCID Icon
Pages 8438-8457 | Received 29 Jan 2021, Accepted 05 May 2021, Published online: 31 May 2021

References

  • Akyol, U., A. E. Akan, and A. Durak. 2015. Simulation and thermodynamic analysis of a hot-air textile drying process. The Journal of the Textile Institute 106 (3):260–74. doi:10.1080/00405000.2014.916062.
  • Akyuz, E., C. Coskun, Z. Oktay, and I. Dincer. 2012. A novel approach for estimation of photovoltaic exergy efficiency. Energy 44 (1):1059–66. doi:10.1016/j.energy.2012.04.036.
  • Alnaqi, A. A., H. Moayedi, A. Shahsavar, and T. K. Nguyend. 2019. Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energy Conversion and Management 183:137–48. doi:10.1016/j.enconman.2019.01.005.
  • Arifin, Z., D. D. D. P. Tjahjana, S. Hadi, R. A. Rachmanto, G. Setyohandoko, and B. Sutanto. 2020. Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. International Journal of Photoenergy 2020:1–9. doi:10.1155/2020/1574274.
  • Bayrak, F., G. Ertürk, and H. F. Oztop. 2017. Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of Cleaner Production 164:58–69. doi:10.1016/j.jclepro.2017.06.108.
  • Bokor, B., H. Akhan, D. Eryener, and M. Horváth. 2021. Nocturnal passive cooling by transpired solar collectors. Applied Thermal Engineering 188:1–18. doi:10.1016/j.applthermaleng.2021.116650.
  • Coskun, C., Z. Oktay, and I. Dincer. 2011. Estimation of monthly solar radiation distribution for solar energy system analysis. Energy 36 (2):1319–23. doi:10.1016/j.energy.2010.11.009.
  • Dincer, I., S. Dilmac, I. E. Ture, and M. Edin. 1996. A Simple technique for estimating solar radiation parameters and its application for Gebze. Energy Conversion and Management 37 (2):183–98. doi:10.1016/0196-8904(95)00168-D.
  • El Mays, A., R. Ammar, M. Hawa, M. A. Akroush, F. Hachem, M. Khaled, and M. Ramadan. 2017. Improving photovoltaic panel using finned plate of aluminum. Energy Procedia 119:812–17. doi:10.1016/j.egypro.2017.07.103.
  • Elbreki, A. M., K. Sopian, A. Fazlizan, and A. Ibrahim. 2020. An innovative technique of passive cooling PV module using lapping fins and planner reflector. Case Studies in Thermal Engineering 19:1–8. doi:10.1016/j.csite.2020.100607.
  • Fahrenbruch, A. L., and R. H. Bube. 1983. Fundamentals of solar cells: Photovoltaic solar energy conversion. New York: Academic Press.
  • Gholampour, M., and M. Ameri. 2016. Energy and exergy analyses of photovoltaic/thermal flat transpired collectors: Experimental and theoretical study. Applied Energy 164:837–56. doi:10.1016/j.apenergy.2015.12.042.
  • Grubišić-Čabo, F., S. Nižetić, D. Čoko, I. M. Kragić, and A. Papadopoulos. 2018. Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface. Journal of Cleaner Production 176:119–29. doi:10.1016/j.jclepro.2017.12.149.
  • Grubišić‐Čabo, F., S. Nižetić, I. M. Kragić, and D. Čoko. 2019. Further progress in the research of fin-based passive cooling technique for the free-standing silicon photovoltaic panels. International Journal of Energy Research 43 (8):3475–95. doi:10.1002/er.4489.
  • Halabi, L. M., S. Mekhilef, and M. Hossain. 2018. Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Applied Energy 213:247–61. doi:10.1016/j.apenergy.2018.01.035.
  • Hasan, D. J., and A. A. Farhan. 2019. Enhancing the efficiency of photovoltaic panel using open-cell copper metal foam fins. International Journal of Renewable Energy Research 9:1849–55.
  • Hepbasli, A. 2008. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable & Sustainable Energy Reviews 12 (3):593–661. doi:10.1016/j.rser.2006.10.001.
  • Jha, R. K., A. Yadav, and D. Sharma. 2019. Second law analysis of the 160 Wp standalone solar photovoltaic system. International Journal of Sustainable Energy 38 (9):904–17. doi:10.1080/14786451.2019.1616733.
  • Khanna, S., K. S. Reddy, and T. K. Mallick. 2018. Climatic behaviour of solar photovoltaic integrated with phase change material. Energy Conversion and Management 166:590–601. doi:10.1016/j.enconman.2018.04.056.
  • Kumar, K. R., and M. S. Kalavathi. 2018. Artificial intelligence based forecast models for predicting solar power generation. Materials Today: Proceedings 5:796–802. doi:10.1016/j.matpr.2017.11.149.
  • Laarabi, B., O. M. Tzuc, D. Dahlioui, A. Bassam, M. Flota-Banuelos, and A. Barhdadi. 2019. Artificial neural network modeling and sensitivity analysis for soiling effects on photovoltaic panels in Morocco. Superlattices and Microstructures 127:139–50. doi:10.1016/j.spmi.2017.12.037.
  • Manasrah, A., A. Al Zyoud, and E. Abdelhafez. 2021. Effect of color and nano film filters on the performance of solar photovoltaic module. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (6):705–15. doi:10.1080/15567036.2019.1631907.
  • Marinić-Kragić, I., S. Nižetić, F. Grubišić-Čabo, and D. Čoko. 2020. Analysis and optimization of passive cooling approach for free-standing photovoltaic panel: Introduction of slits. Energy Conversion and Management 204:1–11. doi:10.1016/j.enconman.2019.112277.
  • Mittal, M., B. Bora, S. Saxena, and A. M. Gaur. 2018. Performance prediction of PV module using electrical equivalent model and artificial neural network. Solar Energy 176:104–17. doi:10.1016/j.solener.2018.10.018.
  • Nižetić, S., M. Arıcı, F. Bilgin, and F. Grubišić-Čabo. 2018. Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. Journal of Cleaner Production 170:1006–16. doi:10.1016/j.jclepro.2017.09.164.
  • Pang, Z., F. Niu, and Z. O’Neill. 2020. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renewable Energy 156:279–89. doi:10.1016/j.renene.2020.04.042.
  • Parkunam, P., L. Pandiyan, N. G, A. S, and V. Vijayan. 2020. Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (6):653–63. doi:10.1080/15567036.2019.1588429.
  • Petela, R. 2003. Exergy of undiluted thermal radiation. Solar Energy 74 (6):469–88. doi:10.1016/S0038-092X(03)00226-3.
  • Prommas, R., S. Phiraphat, and P. Rattanadecho. 2019. Energy and exergy analyses of PV roof solar collector. International Journal of Heat and Technology 37 (1):303–12. doi:10.18280/ijht.370136.
  • Sahin, A. D., I. Dincer, and M. A. Rosen. 2007. Thermodynamic analysis of solar photovoltaic cell systems. Solar Energy Materials & Solar Cells 91 (2–3):153–59. doi:10.1016/j.solmat.2006.07.015.
  • Sarhaddi, F., S. Farahat, H. Ajam, and A. Behzadmehr. 2009. Exergetic optimization of a solar photovoltaic array. Hindawi Publishing Corporation Journal of Thermodynamics 1–11. doi:10.1155/2009/313561.
  • Sudhakar, K., and T. Srivastava. 2014. Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy 35 (1):51–57. doi:10.1080/01430750.2013.770799.
  • Yadav, A. K., and S. S. Chandel. 2017. Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using artificial neural network and multiple linear regression models. Renewable and Sustainable Energy Reviews 77:955–69. doi:10.1016/j.rser2016.12.029.
  • Yousif, J. H., H. A. Kazem, N. N. Alattar, and I. I. Elhassan. 2019. A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Studies in Thermal Engineering 13:100407. doi:10.1016/j.csite.2019.100407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.