667
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Synergizing hydrogen and cement industries for Canada’s climate plan – case study

&

References

  • Amos, W. A. 1998. Cost of storing and transporting hydrogen.
  • Canada’s official greenhouse gas inventory. 2021. Government of Canada.https://www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/inventory.html
  • Carty, R. H., M. M. Mazumder, J. D. Schreiber, and J. B. Pangborn. 1981. Thermochemical production of hydrogen.
  • Dean, C. C., J. Blamey, N. H. Florin, M. J. Al-Jeboori, and P. S. Fennell. 2011. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research & Design 89 (6):836–55. doi:10.1016/j.cherd.2010.10.013.
  • Dokiya, M., and Y. Kotera. 1976. Hybrid cycle with electrolysis using Cu-Cl system. International Journal of Hydrogen Energy 1 (2):117–21. doi:10.1016/0360-3199(76)90064-1.
  • El-Emam, R. S., H. Ozcan, and C. Zamfirescu. 2020. Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production 262:121424. doi:10.1016/j.jclepro.2020.121424.
  • El-Emam, R. S., I. Dincer, and C. Zamfirescu. 2019. Enhanced CANDU reactor with heat upgrade for combined power and hydrogen production. International Journal of Hydrogen Energy 44 (42):23580–88. doi:10.1016/j.ijhydene.2019.06.181.
  • El-Emam, R. S., and I. Khamis. 2019. Advances in nuclear hydrogen production: Results from an IAEA international collaborative research project. International Journal of Hydrogen Energy 44 (35):19080–88. doi:10.1016/j.ijhydene.2018.04.012.
  • Engineering Village. 2021. Elsevier. https://www.engineeringvillage.com
  • Fierro, J. J., A. Escudero-Atehortua, C. Nieto-Londoño, M. Giraldo, H. Jouhara, and L. C. Wrobel. 2020. Evaluation of waste heat recovery technologies for the cement industry. International Journal of Thermofluids 7-8:100040. doi:10.1016/j.ijft.2020.100040.
  • HDR Engineering. 2014. Bowmanville cement plant design and operations report . Accessed http://www.stmaryscement.com/Documents/SMC-Design-Operations-Report_ECAApplication.pdf
  • IEA. 2017. Energy technology perspectives. International Energy Agency, Paris
  • IEA. 2020. Cement. International eEnergy aAgency., Paris. https://www.iea.org/reports/cement
  • Ishaq, H., I. Dincer, and G. F. Naterer. 2019. Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production. Energy 172:1243–53. doi:10.1016/j.energy.2019.02.026.
  • Júnior, E. P. B., M. D. P. Arrieta, F. R. P. Arrieta, and C. H. F. Silva. 2019. Assessment of a Kalina cycle for waste heat recovery in the cement industry. Applied Thermal Engineering 147:421–37. doi:10.1016/j.applthermaleng.2018.10.088.
  • Lehne, J., and F. Preston. 2018. Making concrete change: Innovation in low-carbon cement and concrete.
  • Liu, J., Q. Yu, Z. Zuo, F. Yang, W. Duan, and Q. Qin. 2017. Blast furnace slag obtained from dry granulation method as a component in slag cement. Construction and Building Materials 131:381–87. doi:10.1016/j.conbuildmat.2016.11.040.
  • Madlool, N. A., R. Saidur, M. S. Hossain, and N. A. Rahim. 2011. A critical review on energy use and savings in the cement industries. Renewable and Sustainable Energy Reviews 15 (4):2042–60. doi:10.1016/j.rser.2011.01.005.
  • Madlool, N. A., R. Saidur, N. A. Rahim, M. R. Islam, and M. S. Hossian. 2012. An exergy analysis for cement industries: An overview. Renewable and Sustainable Energy Reviews 16 (1):921–32. doi:10.1016/j.rser.2011.09.013.
  • Mcmaster. 2019. McMaster-Carr. http://www.mcmaster.com/#catalog
  • Mittal, A., and D. Rakshit. 2020a. Energy audit and waste heat recovery from kiln hot shell surface of a cement plant. Thermal Science and Engineering Progress 19:100599. doi:10.1016/j.tsep.2020.100599.
  • Mittal, A., and D. Rakshit. 2020b. Utilization of cement rotary kiln waste heat for calcination of phosphogypsum. Thermal Science and Engineering Progress 20:100729. doi:10.1016/j.tsep.2020.100729.
  • Moreira, L. F., and F. R. P. Arrieta. 2019. Thermal and economic assessment of organic Rankine cycles for waste heat recovery in cement plants. Renewable and Sustainable Energy Reviews 114:109315. doi:10.1016/j.rser.2019.109315.
  • Naterer, G. F., S. Suppiah, L. Stolberg, M. Lewis, Z. Wang, M. A. Rosen, I. Dincer, K. Gabriel, A. Odukoya, E. Secnik, et al.. 2015. Progress in thermochemical hydrogen production with the copper–chlorine cycle. International Journal of Hydrogen Energy 40 (19):6283–95. doi:10.1016/j.ijhydene.2015.02.124.
  • Naterer, G. F., S. Suppiah, M. A. Rosen, K. Gabriel, I. Dincer, O. A. Jianu, Z. Wang, E. B. Easton, B. M. Ikeda, G. Rizvi, et al. 2017. Advances in unit operations and materials for the Cu Cl cycle of hydrogen production. International Journal of Hydrogen Energy 42 (24):15708–23. doi:10.1016/j.ijhydene.2017.03.133.
  • Obrist, M. D., R. Kannan, T. J. Schmidt, and T. Kober. 2021. Decarbonization pathways of the Swiss cement industry towards net zero emissions. Journal of Cleaner Production 288:125413. doi:10.1016/j.jclepro.2020.125413.
  • Odukoya, A., and G. F. Naterer. 2014. Upgrading waste heat from a cement plant for thermochemical hydrogen production. International Journal of Hydrogen Energy 39 (36):20898–906. doi:10.1016/j.ijhydene.2014.10.096.
  • Olivier, J., G. Janssens-Maenhout, M. Muntean, and J. Peters. 2016. Trends in global CO2 emissions: 2016 Report. PBL Netherlands Environmental Assessment Agency.
  • Qin, Y., X. Lv, C. Bai, G. Qiu, and P. Chen. 2012. Waste heat recovery from blast furnace slag by chemical reactions. The Journal of the Minerals, Metals & Materials Society (TMS) 64 (8):997–1001. doi:10.1007/s11837-012-0392-3.
  • Söğüt, Z., Z. Oktay, and H. Karakoç. 2010. Mathematical modeling of heat recovery from a rotary kiln. Applied Thermal Engineering 30 (8–9):817–25. doi:10.1016/j.applthermaleng.2009.12.009.
  • U.S. Geological survey, mineral commodity summaries 2020. U.S. Geological Survey, Reston, Virginia, 2020. doi:10.3133/mcs2020
  • Weil, S., S. Hamel, and W. Krumm. 2006. Hydrogen energy from coupled waste gasification and cement production—a thermochemical concept study. International Journal of Hydrogen Energy 31 (12):1674–89. doi:10.1016/j.ijhydene.2005.12.015.
  • Zuberi, M. J. S., and M. K. Patel. 2017. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry. Journal of Cleaner Production 142:4294–309. doi:10.1016/j.jclepro.2016.11.178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.