539
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Novel modified nano-silica/polymer composite in water-based drilling fluids to plug shale pores

ORCID Icon, , , , , , , , , , , & show all
Pages 8662-8678 | Received 07 Apr 2021, Accepted 09 Jun 2021, Published online: 27 Jun 2021

References

  • Aftab, A., M. Ali, M. Arif, S. Panhwar, N. M. C. Saady, E. A. Al-Khdheeawi, O. Mahmoud, A. R. Ismail, A. Keshavarz, and S. Iglauer. 2020a. Influence of tailor-made TiO2/API bentonite nanocomposite on drilling mud performance: Towards enhanced drilling operations. Applied Clay Science 199:105862. doi:10.1016/j.clay.2020.105862.
  • Aftab, A., M. Ali, M. F. Sahito, U. S. Mohanty, N. K. Jha, H. Akhondzadeh, M. R. Azhar, A. R. Ismail, A. Keshavarz, and S. Iglauer. 2020b. Environmental friendliness and high performance of multifunctional tween 80/ZnO-nanoparticles-added water-based drilling fluid: An experimental approach. ACS Sustainable Chemistry & Engineering 8:11224–43. doi:10.1021/acssuschemeng.0c02661.
  • Aftab, A., A. Ismail, and Z. Ibupoto. 2017. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egyptian Journal of Petroleum 26 (2):291–99. doi:10.1016/j.ejpe.2016.05.004.
  • Aftab, A., A. Ismail, S. Khokhar, and Z. H. Ibupoto. 2016. Novel zinc oxide nanoparticles deposited acrylamide composite used for enhancing the performance of water-based drilling fluids at elevated temperature conditions. Journal of Petroleum Science and Engineering 146:1142–57. doi:10.1016/j.petrol.2016.08.014.
  • Ali, M., A. Aftab, Z.-U.-A. Arain, A. Al-Yaseri, H. Roshan, A. Saeedi, S. Iglauer, and M. Sarmadivaleh. 2020a. Influence of organic acid concentration on wettability alteration of cap-rock: Implications for CO2 trapping/storage. ACS Applied Materials & Interfaces 12:39850–58. doi:10.1021/acsami.0c10491.
  • Ali, M., A. Aftab, F. U. R. Awan, H. Akhondzadeh, A. Keshavarz, A. Saeedi, S. Iglauer, and M. Sarmadivaleh. 2021. CO2-wettability reversal of cap-rock by alumina nanofluid: Implications for CO2 geo-storage. Fuel Processing Technology 214:106722. doi:10.1016/j.fuproc.2021.106722.
  • Ali, M., H. H. Jarni, A. Aftab, A. R. Ismail, N. M. C. Saady, M. F. Sahito, A. Keshavarz, S. Iglauer, and M. Sarmadivaleh. 2020b. Nanomaterial-based drilling fluids for exploitation of unconventional reservoirs: A review. Energies 13:3417. doi:10.3390/en13133417.
  • Cai, J., M. E. Chenevert, M. M. Sharma, and J. Friedheim. 2012. Decreasing water invasion into atoka shale using nonmodified silica nanoparticles. SPE Drilling & Completion 27:103–12. doi:10.2118/146979-PA.
  • Chang, X., J. Sun, Z. Xu, K. Lv, Z. Dai, F. Zhang, X. Huang, and J. Liu. 2019. Synthesis of a novel environment-friendly filtration reducer and its application in water-based drilling fluids. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 568:284–93. doi:10.1016/j.colsurfa.2019.01.055.
  • Civan, F. 2015. Reservoir formation damage. Houston, Texas, USA: Gulf Professional Publishing.
  • Clarkson, C. R., N. Solano, R. M. Bustin, A. Bustin, G. Chalmers, L. He, Y. B. Melnichenko, A. Radliński, and T. P. Blach. 2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103:606–16. doi:10.1016/j.fuel.2012.06.119.
  • Contreras, O., G. Hareland, M. Husein, R. Nygaard, and M. Alsaba. 2014. Wellbore strengthening in sandstones by means of nanoparticle-based drilling fluids[C]//SPE deepwater drilling and completions conference. Society of Petroleum Engineers, SPE-170263-MS.
  • Falode, O., O. Ehinola, and P. Nebeife. 2008. Evaluation of local bentonitic clay as oil well drilling fluids in Nigeria. Applied Clay Science 39 (1–2):19–27. doi:10.1016/j.clay.2007.04.011.
  • Ghassemi, A., Q. Tao, and A. Diek. 2009. Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale. Journal of Petroleum Science and Engineering 67:57–64. doi:10.1016/j.petrol.2009.02.015.
  • Hayashi, S., K. Fujiki, and N. Tsubokawa. 2000. Grafting of hyperbranched polymers onto ultrafine silica: Postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafted onto the surface. Reactive & Functional Polymers 46 (2):193–201. doi:10.1016/S1381-5148(00)00053-5.
  • Hoelscher, K. P., G. De Stefano, M. Riley, and S. Young. 2012. Application of nanotechnology in drilling fluids, SPE international oilfield nanotechnology conference and exhibition. Society of Petroleum Engineers,  SPE-157031-MS.
  • Huang, X., J. Sun, K. Lv, J. Liu, H. Shen, and F. Zhang. 2018. Application of core-shell structural acrylic resin/nano-SiO2 composite in water based drilling fluid to plug shale pores. Journal of Natural Gas Science and Engineering 55:418–25. doi:10.1016/j.jngse.2018.05.023.
  • Ismail, A., A. Aftab, Z. Ibupoto, and N. Zolkifile. 2016a. The novel approach for the enhancement of rheological properties of water-based drilling fluids by using multi-walled carbon nanotube, nanosilica and glass beads. Journal of Petroleum Science and Engineering 139:264–75. doi:10.1016/j.petrol.2016.01.036.
  • Ismail, A. R., W. Sulaiman, M. Jaafar, A. Aftab, A. Razi, and Z. Ibupoto. 2016b. The application of MWCNT to enhance the rheological behavior of drilling fluids at high temperature. Malaysian Journal of Fundamental and Applied Sciences 12(3): 95–98.
  • Jain, R., and V. Mahto. 2015. Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. Journal of Petroleum Science and Engineering 133:612–21. doi:10.1016/j.petrol.2015.07.009.
  • Li, M.-C., Q. Wu, J. Han, C. Mei, T. Lei, S.-Y. Lee, and J. Gwon. 2020. Overcoming salt contamination of bentonite water-based drilling fluids with blended dual-functionalized cellulose nanocrystals. ACS Sustainable Chemistry & Engineering 8 (31):11569–78. doi:10.1021/acssuschemeng.0c02774.
  • Li, T., H. Tian, J. Chen, and L. Cheng. 2016. Application of low pressure gas adsorption to the characterization of pore size distribution of shales: An example from Southeastern Chongqing area, China. Journal of Natural Gas Geoscience 1 (3):221–30. doi:10.1016/j.jnggs.2016.07.001.
  • Li, Y., Y. Wang, Q. Wang, Z. Liu, L. Tang, L. Liang, C. Zhang, Q. Li, N. Xu, and J. Sun. 2021. Achieving the super gas-wetting alteration by functionalized nano-silica for improving fluid flowing capacity in gas condensate reservoirs. ACS Applied Materials & Interfaces  13(9): 10996-11006.
  • Lin, M., Z. Dong, B. Peng, M. Li, and Z. Wu. 2011. Shape, size and plugging properties of crosslinked polyacrylamide microspheres. Acta Polymerica Sinica 1: 48–54.
  • Liu, H., and N. Seaton. 1994. Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids Containing Large Mesopores, Chemical Engineering Science 49:1869–78.
  • Liu, X., W. Zeng, L. Liang, and J. Xiong. 2016. Experimental study on hydration damage mechanism of shale from the longmaxi formation in southern Sichuan Basin, China. Petroleum 2 (1):54–60. doi:10.1016/j.petlm.2016.01.002.
  • Mahmoud, O., H. A. Nasr-El-Din, Z. Vryzas, and V. C. Kelessidis. 2016. Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications, SPE international conference and exhibition on formation damage control. Society of Petroleum Engineers, SPE-178949-MS.
  • Nizamani, A., A. R. Ismail, R. Junin, A. Dayo, A. Tunio, Z. Ibupoto, and M. Sidek. 2017. Synthesis of titania-bentonite nanocomposite and its applications in water-based drilling fluids. Chemical Engineering Transactions 56:949–54.
  • Rana, A., M. K. Arfaj, and T. A. Saleh. 2019. Advanced developments in shale inhibitors for oil production with low environmental footprints–A review. Fuel 247:237–49. doi:10.1016/j.fuel.2019.03.006.
  • Rashidi, S., M. Eskandarian, O. Mahian, and S. Poncet. 2019. Combination of nanofluid and inserts for heat transfer enhancement. Journal of Thermal Analysis and Calorimetry 135 (1):437–60. doi:10.1007/s10973-018-7070-9.
  • Sensoy, T., M. E. Chenevert, and M. M. Sharma. 2009. Minimizing water invasion in shales using nanoparticles, SPE annual technical conference and exhibition. Society of Petroleum Engineers, SPE-124429-MS.
  • Spisak, B. J. 2011. Using nanoparticle stabilized foam to achieve wellbore stability in shales. Austin: University of Texas. http://hdl.handle.net/2152/ETD-UT-2011-08-4327
  • Sun, J., X. Chang, F. Zhang, Y. Bai, K. Lv, J. Wang, X. Zhou, and B. Wang. 2020. Salt-responsive zwitterionic polymer brush based on modified silica nanoparticles as a fluid-loss additive in water-based drilling fluids. Energy & Fuels 34 (2):1669–79. doi:10.1021/acs.energyfuels.9b04109.
  • Tianshou, M., and C. Ping. 2014. Study of meso-damage characteristics of shale hydration based on CT scanning technology. Petroleum Exploration and Development 41:249–56. doi:10.1016/S1876-3804(14)60029-X.
  • Van Oort, E. 2003. On the physical and chemical stability of shales. Journal of Petroleum Science and Engineering 38 (3–4):213–35. doi:10.1016/S0920-4105(03)00034-2.
  • Wakeman, R., and S. Tarleton. 2005. Solid/liquid separation: Principles of industrial filtration. Radarweg 29, 1043 NX Amsterdam, The Netherlands: Elsevier.
  • Wang, W., Z. Qiu, W. Huang, H. Zhong, and D. Bao. 2016. Preparation and characteristics of nano polymer microspheres used as plugging agent in drilling fluid. Drilling fluid Complete Fluid 33:33–36.
  • Xie, G., P. Luo, M. Deng, and Z. Wang. 2015. Nanoplugging performance of hyperbranched polyamine as nanoplugging agent in oil-based drilling fluid. Journal of Nanomaterials 2015:1–8. doi:10.1155/2015/821910.
  • Xingang, Z., K. Jiaoli, and L. Bei. 2013. Focus on the development of shale gas in China—based on SWOT analysis. Renewable and Sustainable Energy Reviews 21:603–13. doi:10.1016/j.rser.2012.12.044.
  • Yadav, A., and S. Khan. 0000. Wellbore stability optimization in shale gas wells by integrating geomechanics and drilling practices[C]//SPE/IADC Middle East Drilling Technology Conference & Exhibition. Society of Petroleum Engineers, SPE-166735-MS.
  • Zou, C. 2017. Unconventional petroleum geology.  Radarweg 29, 1043 NX Amsterdam, The Netherlands: Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.