145
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive Analysis of Solar Dryer with a Natural Draught

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3563-3583 | Received 15 May 2021, Accepted 30 Jun 2021, Published online: 16 Jul 2021

References

  • Abdullah, A. H., H. Z. Abou-Ziyan, and A. A. Ghoneim. 2003. Thermal performance of flat plate solar collector using various arrangements of compound honeycomb. Energy Conversion and Management 44 (19):3093–112. doi:10.1016/s0196-8904(0300013-x.
  • Akhtar, N., and S. C. Mullick. 2012. Effects of absorption of solar radiation in glass-cover(s) on heat transfer coefficients in upward heat flow in single and double glazed flat-plate collectors. Int J Heat Mass Tran 55:125–32. doi:10.1016/j.ijheatmasstransfer.2011.08.048.
  • Arora, C. P. 1981. Refrigeration and air conditioning: (in SI units). Co, New Delhi: Tata McGraw-Hill Pub.
  • Banout, J., P. Ehl, J. Havlik, B. Lojka, Z. Polesny, and V. Verner. 2011. Design and performance evaluation of a Double-pass solar drier for drying of red chilli (Capsicum annum L.). Solar Energy 85 (3):506–15. doi:10.1016/j.solener.2010.12.017.
  • Belessiotis, V., and E. Delyannis. 2011. Solar drying. Sol. Energy 85:1665–91. doi:10.1016/j.solener.2009.10.001.
  • Bena, B., and R. J. Fuller. 2002. Natural convection solar dryer with biomass back-up heater. Solar Energy 72 (1):75–83. doi:10.1016/s0038-092x(0100095-0.
  • Chauhan, Y. B., and P. P. Rathod. 2018. A comprehensive review of the solar dryer. International Journal of Ambient Energy 1–20. doi:10.1080/01430750.2018.1456960.
  • Chen, B., and H. Tian 2008. Experimental Study on Optimal Heating Methods of Wall-Mounted Solar Air Collector. In: D. Y. Goswami and Y. Zhao (eds) Proceedings of ISES World Congress 2007,Beijing, China, (Vol. I – V). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-75997-3_150.
  • Dhaundiyal, A., and D. Atsu. 2020. The effect of wind on the temperature distribution of photovoltaic modules. Solar Energy 201:259–67. doi:10.1016/j.solener.2020.03.012.
  • Dhaundiyal, A., and D. Atsu. 2021. Energy assessment of photovoltaic modules. Solar Energy 218:337–45. doi:10.1016/j.solener.2021.02.055.
  • Dović, D. Andrassy, M. 2012.Numerically assisted analysis of flat and corrugated plate solar collectors’ thermal performances’. Solar Energy 86 (9):2416–31. doi:10.1016/j.solener.2012.05.016.
  • Duffie, J. A., and W. A. Beckman. 2013. Solar Engineering of Thermal Processes: Fourth Edition, Solar Engineering of Thermal Processes. Fourth. New Jersey, John Wiley & Sons. doi: 10.1002/9781118671603.
  • El Hage, H., A. Herez, M. Ramadan, H. Bazzi, and M. Khaled. 2018. An investigation on solar drying: A review with economic and environmental assessment. Energy 157:815–29. doi:10.1016/j.energy.2018.05.197.
  • https://www.emcoplastics.com/assets/pdf/plexiglas/Plexiglas%20General%20Information%20and%20Properties.pdf ( Accessed: 10th May 2020)
  • Fleck, B. A., R. M. Meier, and M. D. Matovic. 2002. A field study of the wind effects on the performance of an unglazed transpired solar collector. Solar Energy 73:209–16. doi:10.1016/S0038-092X(02)00007-5.
  • García, A., R. Herrero-Martin, J. P. Solano, and J. Pérez-García. 2018. The role of insert devices on enhancing heat transfer in a flat-plate solar water collector. Applied Thermal Engineering 132:479–89. doi:10.1016/j.applthermaleng.2017.12.090.
  • Ho, C. D., C. W. Yeh, and S. M. Hsieh. 2005a. Improvement in device performance of multi-pass flat-plate solar air heaters with external recycle. Renewable Energy. 30 (10):1601–21. doi:10.1016/j.renene.2004.11.009.
  • Holman, J. P. 2002. Heat transfer 9th Edition. In New York, Boston, McGraw-Hill, Inc. ISBN: 9780470873663.
  • Hu, J., M. Guo, J. Guo, G. Zhang, and Y. Zhang. 2020. Numerical and experimental investigation of solar air collector with internal swirling flow. Renewable Energy 162:2259–71. doi:10.1016/j.renene.2020.10.048.
  • Karwa, R., and G. Chitoshiya. 2013. Performance study of solar air heater having v-down discrete ribs on absorber plate. Energy 55:939–55. doi:10.1016/j.energy.2013.03.068.
  • Kim, J.-H., S.-H. Park, and J.-T. Kim. 2014. Experimental Performance of a Photovoltaic-thermal Air Collector. Energy Procedia 48:888–94. doi:10.1016/j.egypro.2014.02.102.
  • Kumar, R. A., B. G. Babu, and M. Mohanraj. 2016. Thermodynamic performance of forced convection solar air heaters using pin–fin absorber plate packed with latent heat storage materials. Journal of Thermal Analysis and Calorimetry 126 (3):1657–78. doi:10.1007/s10973-016-5665-6.
  • Kumar, R. A., B. G. Babu, and M. Mohanraj. 2017. Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials. International Journal of Green Energy 14 (15):1238–55. doi:10.1080/15435075.2017.1330753.
  • Kunze, O. R. 1987. Solar dryers—Their role in post-harvest processing. Energy in Agriculture 6 (2):177–78. doi:10.1016/0167-5826(8790015-5.
  • Li, B. J., S. J. You, T. Z. Ye, H. Zhang, X. L. Li, and C. Li. 2014. Mathematical modelling and experimental verification of vacuum glazed transpired solar collector with slit-like perforations. Renewable Energy 69:43–49. doi:10.1016/j.renene.2014.02.054.
  • Matheswaran, M. M., T. V. Arjunan, and D. Somasundaram. 2018. Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Solar Energy 161:25–37. doi:10.1016/j.solener.2017.12.036.
  • Mujumdar, A. S. 2014. Handbook of industrial drying, fourth edition, Handbook of Industrial Drying. Fourth. doi: 10.1201/b17208.
  • Mustayen, A. G. M. B., S. Mekhilef, and R. Saidur. 2014. Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews 34:463–70. doi:10.1016/j.rser.2014.03.020.
  • Nag, P. K. 1982. Engineering Thermodynamics. Co, New Delhi: Tata McGraw-Hill Pub.
  • Nahar, N. M., and M. P. Gupta. 1989. Studies on gap spacing between absorber and cover glazing in flat plate solar collectors. International Journal of Energy Research 13 (6):727–32. doi:10.1002/er.4440130611.
  • Nukulwar, M. R., and V. B. Tungikar. 2021. Drying kinetics and thermal analysis of turmeric blanching and drying using solar thermal system. Sustainable Energy Technologies and Assessments 45:101120. doi:10.1016/j.seta.2021.101120.
  • Panchal, H., and P. Shah. 2013d. Performance analysis of double basin solar still with evacuated tubes. Applied Solar Energy 49 (3):174–79. doi:10.3103/S0003701X13030067.
  • Pelsmakers, S. 2019. The Environmental Design Pocketbook. The Environmental Design Pocketbook. doi:10.4324/9780429347573.
  • Rabha, D. K., P. Muthukumar, and C. Somayaji. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renewable Energy 2017 (105):764–73. doi:10.1016/j.renene.2017.01.007.
  • Ramadan, M. R. I.,A.A. El Sebaii, S. Aboul Enein, and E.El-Baily. 2007. Thermal performance of a packed bed double-pass solar air heater. Energy 32(8): 1524–35. doi:10.1016/j.energy.2006.09.019.
  • Sreekumar, A., P. E. Manikantan, and K. P. Vijayakumar. 2008. Performance of indirect solar cabinet dryer. Energy Conversion and Management 49 (6):1388–95. doi:10.1016/j.enconman.2008.01.005.
  • Stephenson, D. G. 1967. Tables of solar altitudes, azimuth intensity and heat gain factors for latitude from 43° to 55° North. Technical paper No.243, Division of Building Research, National Research Council of Canada.
  • Tayeb, A. M. 1986. Modern solar grain dryer. Sol. Wind Technol 3:211–14. doi:10.1016/0741-983X(8690036-6.
  • The Building Regulations and Approved Documents. 2017. The Building Regulations, 2.1–2.32. doi:10.1002/9781119070818.ch2.
  • Tuncer, A. D., A. Sozen, A. Khanlari, A. Amini, and C. Sirin. 2020. Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer. Solar Energy 203. Available at: doi:304–16. doi:10.1016/j.solener.2020.04.030.
  • Zhang, H., X. Ma, S. You, Y. Wang, X. Zheng, T. Ye, and S. Wei. 2018. Mathematical modelling and performance analysis of a solar air collector with slit-perforated corrugated plate. Solar Energy 167:147–57. doi:10.1016/j.solener.2018.04.003.
  • Zheng, W., B. Li, H. Zhang, S. You, Y. Li, and T. Ye. 2016. Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions. Energy 109:781–90. doi:10.1016/j.energy.2016.05.064.
  • Zheng, W., H. Zhang, S. You, and Y. Fu. 2017b. Experimental investigation of the transpired solar air collectors and metal corrugated packing solar air collectors. Energies 302 (10):938–47. doi:10.1016/j.apenergy.2017.06.016.
  • Zheng, W., H. Zhang, S. You, Y. Fu, and X. Zheng. 2017a. Thermal performance analysis of a metal corrugated packing solar air collector in cold regions. Applied Energy 203:938–47. doi:10.1016/j.apenergy.2017.06.016.
  • Zhu, T., Y. Diao, Y. Zhao, and C. Ma. 2017. Performance evaluation of a novel flat-plate solar air collector with micro-heat pipe arrays (MHPA). Applied Thermal Engineering 118:1–16. doi:10.1016/j.applthermaleng.2017.02.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.