504
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Optimal site selection for wind energy: a case study

ORCID Icon & ORCID Icon
Pages 6660-6677 | Received 29 Dec 2020, Accepted 07 Jul 2021, Published online: 28 Jul 2021

References

  • Abbey, C., and G. Joos. 2009. A stochastic optimization approach to rating of energy storage systems in wind-diesel isolated grids. IEEE Transactions on Power Systems 24 (1):418–26. doi:10.1109/TPWRS.2008.2004840.
  • Al-Musaylh, M. S., R. C. Deo, J. F. Adamowski, and Y. Li. 2018. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics 35:1–16. doi:10.1016/j.aei.2017.11.002.
  • Ari, E. S., and C. Gencer. 2020. Proposal of a novel mixed integer linear programming model for site selection of a wind power plant based on power maximization with use of mixed type wind turbines. Energy & Environment 31 (5):825–41. doi:10.1177/0958305X19882394.
  • Bhowmik, C., S. Bhowmik, A. Ray, and K. M. Pandey. 2017. Optimal green energy planning for sustainable development: A review. Renewable and Sustainable Energy Reviews 71:796–813. doi:10.1016/j.rser.2016.12.105.
  • Box, G. E. P., and G. M. Jenkins. 1976. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day Inc.
  • Cameron, A. C., and F. A. G. Windmeijer. 1997. An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics 77 (2):329–42. doi:10.1016/S0304-4076(96)01818-0.
  • Chen, J., F. Wang, and K. A. Stelson. 2018. a mathematical approach to minimizing the cost of energy for large utility wind turbines. Applied Energy 228:1413–22. doi:10.1016/j.apenergy.2018.06.150.
  • Contreras, J., R. Espinola, F. J. Nogales, and A. J. Conejo. 2003. ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems 18 (3):1014–20. doi:10.1109/TPWRS.2002.804943.
  • De Felice, M., A. Alessandri, and F. Catalano. 2015. Seasonal climate forecasts for medium-term electricity demand forecasting. Applied Energy 137:435–44. doi:10.1016/j.apenergy.2014.10.030.
  • De La Cruz, V., and M. Martín. 2016. Characterization and optimal site matching of wind turbines: Effects on the economics of synthetic methane production. Journal of Cleaner Production 133:1302–11. doi:10.1016/j.jclepro.2016.06.019.
  • De La Torre, S., and A. J. Conejo. 2005. Optimal self-scheduling of a tidal power plant. Journal of Energy Engineering 131 (1):26–51. doi:10.1061/(ASCE)0733-9402(2005)131:1(26).
  • De Ladurantaye, D., M. Gendreau, and J.-Y. Potvin. 2009. Optimizing profits from hydroelectricity production. Computers & Operations Research 36 (2):499–529. doi:10.1016/j.cor.2007.10.012.
  • De Oliveira, E. M., and F. L. C. Oliveira. 2018. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 144:776–88. doi:10.1016/j.energy.2017.12.049.
  • Derse, O. 2018. Biyogaz Enerji Tesisi için Hedef Programlama ile Yer Seçimi Problemi [Facility location selection problem for biogas energy plant by goal programming]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi [Süleyman Demirel University Journal of Natural and Applied Sciences] 22:121–26. doi:10.19113/sdufbed.67077.
  • Derse, O., E. Göçmen, E. Yılmaz, and R. Erol. 2020. A mathematical programming model for facility location optimization of hydrogen production from renewable energy sources. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Published online: 31 August 2020. 12 pages. doi:10.1080/15567036.2020.1812769.
  • Deveci, M., U. Cali, S. Kucuksari, and N. Erdogan. 2020a. Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy 198 (117317):15. doi:10.1016/j.energy.2020.117317.
  • Deveci, M., E. Özcan, R. John, C.-F. Covrig, and D. Pamucar. 2020b. A study on offshore wind farm siting criteria using a novel interval-valued fuzzy-rough based delphi method. Journal of Environmental Management 270 (110916):17. doi:10.1016/j.jenvman.2020.110916.
  • Ebadian, M., T. Sowlati, S. Sokhansanj, L. Townley-Smith, and M. Stumborg. 2013. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production. Applied Energy 102:840–49. doi:10.1016/j.apenergy.2012.08.049.
  • Ediger, V. Ş., and S. Akar. 2007. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35 (3):1701–08. doi:10.1016/j.enpol.2006.05.009.
  • Erdogan, A., D. M. Cakici, and C. O. Colpan. 2017. Thermodynamic optimisation of a hybrid solar-geothermal power plant using Taguchi method. International Journal of Exergy 23 (1):63–84. doi:10.1504/IJEX.2017.084524.
  • Erdogdu, E. 2007. Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey. Energy Policy 35 (2):1129–46. doi:10.1016/j.enpol.2006.02.013.
  • Erdogdu, E. 2010. Natural Gas Demand in Turkey. Applied Energy 87 (1):211–19. doi:10.1016/j.apenergy.2009.07.006.
  • Fattahi, M., and K. Govindan. 2018. A Multi-Stage Stochastic Program for the Sustainable Design of Biofuel Supply Chain Networks under Biomass Supply Uncertainty and Disruption Risk: A Real-Life Case Study. Transportation Research Part E: Logistics and Transportation Review 118:534–67. doi:10.1016/j.tre.2018.08.008.
  • Ghosh, S. 2018. Wave energy potential site selection based on MCDM and neural network analysis. In Application of geographical information systems and soft computation techniques in water and water based renewable energy problems, water resources development and management, ed. M. Majumder, 107–20. Singapore: Springer.
  • Goodwin, P., and R. Lawton. 1999. On the asymmetry of the symmetric MAPE. International Journal of Forecasting 15 (4):405–08. doi:10.1016/S0169-2070(99)00007-2.
  • Grady, S. A., M. Y. Hussaini, and M. M. Abdullah. 2005. Placement of wind turbines using genetic algorithms. Renewable Energy 30 (2):259–70. doi:10.1016/j.renene.2004.05.007.
  • Grosfeld-Nir, A., B. Ronen, and N. Kozlovsky. 2007. The pareto managerial principle: When does it apply? International Journal of Production Research 45 (10):2317–25. doi:10.1080/00207540600818203.
  • Ioannou, A., A. Angus, and F. Brennan. 2017. Risk-based Methods for Sustainable Energy System Planning: A Review. Renewable and Sustainable Energy Reviews 74:602–15. doi:10.1016/j.rser.2017.02.082.
  • Iqbal, M., M. Azam, M. Naeem, A. S. Khwaja, and A. Anpalagan. 2014. Optimization classification, algorithms and tools for renewable energy: A review. Renewable and Sustainable Energy Reviews 39:640–54. doi:10.1016/j.rser.2014.07.120.
  • Jones, D. F., and G. Wall. 2016. An extended goal programming model for site selection in the offshore wind farm sector. Annals of Operations Research 245:121–35. doi:10.1007/s10479-015-1828-2.
  • Khashei, M., and M. Bijari. 2011. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing 11 (2):2664–75. doi:10.1016/j.asoc.2010.10.015.
  • Kongnam, C., S. Nuchprayoon, S. Premrudeepreechacharn, and S. Uatrongjit. 2009. Decision analysis on generation capacity of a wind park. Renewable and Sustainable Energy Reviews 13 (8):2126–33. doi:10.1016/j.rser.2009.01.023.
  • Kuznia, L., B. Zeng, G. Centeno, and Z. Miao. 2013. Stochastic optimization for power system configuration with renewable energy in remote areas. Annals of Operations Research 210:411–32. doi:10.1007/s10479-012-1110-9.
  • Lotfi, R., A. Mostafaeipour, N. Mardani, and S. Mardani. 2018. Investigation of wind farm location planning by considering budget constraints. International Journal of Sustainable Energy 37 (8):799–817. doi:10.1080/14786451.2018.1437160.
  • Luna-Rubio, R., M. Trejo-Perea, D. Vargas-Vázquez, and G. J. Ríos-Moreno. 2012. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Solar Energy 86 (4):1077–88. doi:10.1016/j.solener.2011.10.016.
  • Mahdy, M., and A. S. Bahaj. 2018. Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy 118:278–89. doi:10.1016/j.renene.2017.11.021.
  • Marufuzzaman, M., S. D. Eksioglu, X. Li, and J. Wang. 2014. Analyzing the impact of intermodal-related risk to the design and management of biofuel supply chain. Transportation Research Part E: Logistics and Transportation Review 69:122–45. doi:10.1016/j.tre.2014.06.008.
  • Marvin, W. A., L. D. Schmidt, and P. Daoutidis. 2013. Biorefinery location and technology selection through supply chain optimization. Industrial & Engineering Chemistry Research 52 (9):3192–208. doi:10.1021/ie3010463.
  • Merzifonluoglu, Y., and E. Uzgoren. 2018. Photovoltaic power plant design considering multiple uncertainties and risk. Annals of Operations Research 262:153–84. doi:10.1007/s10479-017-2557-5.
  • Najafi, A., H. Falaghi, J. Contreras, and M. Ramezani. 2016. Medium-term energy hub management subject to electricity price and wind uncertainty. Applied Energy 168:418–33. doi:10.1016/j.apenergy.2016.01.074.
  • Nogales, F. J., J. Contreras, A. J. Conejo, and R. Espínola. 2002. Forecasting next-day electricity prices by time series models. IEEE Transactions on Power Systems 17 (2):342–48. doi:10.1109/TPWRS.2002.1007902.
  • Paulo, H., X. Azcue, A. P. Barbosa-Póvoa, and S. Relvas. 2015. Supply chain optimization of residual forestry biomass for bioenergy production: The case study of Portugal. Biomass and Bioenergy 83:245–56. doi:10.1016/j.biombioe.2015.09.020.
  • Rahman, M. Z., M. N. Sajib, M. M. Safayet Hasan Rifat, M. Hossam-E-Haider, and M. A. A. Khan, 2016. Forecasting the long term energy demand of Bangladesh using SPSS from 2011–2040. 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT),Dhaka, Bangladesh, pp. 1–5.
  • Rehman, S. A. U., Y. Cai, R. Fazal, G. Das Walasai, and N. H. Mirjat. 2017. An integrated modeling approach for forecasting long-term energy demand in Pakistan. Energies 10 (11):1868. doi:10.3390/en10111868.
  • Rouyendegh, B. D., B. Erdebilli, A. Yildizbasi, and Ü. Z. B. Arikan. 2018. Using intuitionistic fuzzy TOPSIS in site selection of wind power plants in Turkey. Advances in Fuzzy Systems 2018:14. Article ID 6703798.
  • Schwarz, H., V. Bertsch, and W. Fichtner. 2018. Two-stage stochastic, large-scale optimization of a decentralized energy system: A case study focusing on solar PV, heat pumps and storage in a residential quarter. OR Spectrum 40:265–310. doi:10.1007/s00291-017-0500-4.
  • Sindhu, S., V. Nehra, and S. Luthra. 2017. Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renewable and Sustainable Energy Reviews 73:496–511. doi:10.1016/j.rser.2017.01.135.
  • Solangi, Y. A., Q. Tan, M. W. A. Khan, N. H. Mirjat, and I. Ahmed. 2018. The selection of wind power project location in the southeastern corridor of Pakistan: A factor analysis, AHP, and Fuzzy-TOPSIS application. Energies 11 (8):1940. doi:10.3390/en11081940.
  • Suganthi, L., and A. A. Samuel. 2012. Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews 16 (2):1223–40.
  • Trapanese, M., 2008. Optimized design of a sea wave energy conversion system. 2008 34th Annual Conference of IEEE Industrial Electronics,Orlando, FL, USA, pp. 2051–54.
  • Turkish Statistical Institute (TURKSTAT). Regional statistics, electricity consumptions by users: Total consumptions (MWh). Accessed September 15, 2020. https://biruni.tuik.gov.tr/bolgeselistatistik/degiskenlerUzerindenSorgula.do?d-4326216-e=2&6578706f7274=1
  • Xie, K., Y.-L. Nian, and W.-L. Cheng. 2018. Analysis and optimization of underground thermal energy storage using depleted oil wells. Energy 163:1006–16. doi:10.1016/j.energy.2018.08.189.
  • Xie, W., and Y. Ouyang. 2013. Dynamic planning of facility locations with benefits from multitype facility colocation. Computer-Aided Civil and Infrastructure Engineering 28 (9):666–78. doi:10.1111/mice.12034.
  • Zhang, X.-Y., X.-K. Wang, S.-M. Yu, J.-Q. Wang, and T.-L. Wang. 2018. Location selection of offshore wind power station by consensus decision framework using picture fuzzy modelling. Journal of Cleaner Production 202:980–92. doi:10.1016/j.jclepro.2018.08.172.
  • Zheng, J., H. Zhang, Y. Dai, B. Wang, T. Zheng, Q. Liao, Y. Liang, F. Zhang, and X. Song. 2020. Time series prediction for output of multi-region solar power plants. Applied Energy 257:114001. doi:10.1016/j.apenergy.2019.114001.
  • Zhou, M., Z. Yan, Y. X. Ni, G. Li, and Y. Nie. 2006. Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach. IEEE proceedings - generation. Transmission and Distribution 153 (2):187–95. doi:10.1049/ip-gtd:20045131.
  • Zucatelli, P. J., E. G. S. Nascimento, G. Y. R. Aylas, N. B. P. Souza, Y. K. L. Kitagawa, A. A. B. Santos, A. M. G. Arce, and D. M. Moreira. 2019. Short-term wind speed forecasting in Uruguay using computational intelligence. Heliyon 5 (5):e01664. doi:10.1016/j.heliyon.2019.e01664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.