450
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigations for Thermal Energy Management by Encapsulation of Nano -Enhanced Bio Phase Change Material in buildings

ORCID Icon, , & ORCID Icon
Pages 4165-4183 | Received 13 Apr 2021, Accepted 30 Jul 2021, Published online: 23 Aug 2021

References

  • Alawadhi, E. M. 2008. Thermal analysis of a building brick containing phase change material. Energy and Buildings 40 (3):351–57. http://doi:10.1016/j.enbuild.2007.03.001.
  • Arici, M., F. Bilgin, S. Nizetic, and H. Karabay. 2020. PCM integrated to external building walls: An optimization study on maximum activation of latent heat”, PCM integrated to external building walls: An optimization study on maximum activation of latent heat. Applied Thermal Engineering 165 (25):114560. doi:10.1016/j.applthermaleng.2019.114560.
  • Cabezaa, L. F., A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández. 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 15 (3):1675–95. doi:10.1016/j.rser.2010.11.018.
  • Chen, X., Y. Zhao, Y. Zhang, A. Lu, X. Li, L. Liu, G. Qin, Z. Fang, J. Zang, and Y. Liu. 2019. A novel design and synthesis of multifunctional magnetic chitosan microsphere-based on phase change materials. Materials Letters 237:185–87. doi:10.1016/j.matlet.2018.11.104.
  • Cobos, M., B. Gozalez, and M. Jesus Fernandes. 2017. Chitosan-Graphene oxide nanocomposites: Effects of Graphene Oxide nanosheets and glycerol plasticizers on thermal and mechanical properties. International Journal of Applied Polymer Science 134 (30):45092. doi:10.1002/app.45092.
  • Ebadi, S., S. H. Tasnim, A. A. Aliabadi, and S. Mahmud. 2018. Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Applied Thermal Engineering 141:724–40. doi:10.1016/j.applthermaleng.2018.05.091.
  • Ehid, R., and S. F. Amy. 2012. Development and characterization of paraffin-based shape stabilized energy storage materials. Energy Conversion and Management 53 (1):84–91. https://doi:10.1016/j.enconman.2011.08.003.
  • Fan, L. –. W., X. Fang, X. Wang, Y. Zeng, Y.-Q. Xiao, Z. T. Yu, X. Xu, Y. –. C. Hu, and K. F. Cen. 2013. Effect of various carbon nano fillers on the thermal conductivity and energy storage properties of paraffin – base nano composite phase change materials. Applied Energy 110:163–72. doi:10.1016/j.apenergy.2013.04.043.
  • Fleischer, A. S, 2015. Thermal Energy Storage Using Phase Change Materials, Fundamentals and Applications, Springer, Cham, pp 68–69, https://doi.org/10.007/978–3–319–20922–7
  • Geetha, N. B., and R. Velraj. 2013. Novel concept of PCM based thermal storage integration in active and passive cooling systems for energy management in buildings. Energy Engineering 110 (1):41–66. doi:10.1080/01998595.2013.10594635.
  • Gong, Y., Y. Yu, H. kang, X. Chen, and L. Hao. 2019. Synthesis and characterization of graphene oxide/chitosan composite aerogels with high mechanical performances. Polymers II (5):777. doi:10.3390/polym11050777.
  • Han, D., L. Yan, W. Chen, and L. Wan. 2011. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers 83 (2):653–58. doi:10.1016/j.carbpol.2010.08.038.
  • HoomanJozMasjidi, A., Z. Babaei, A. Bafrani, D. S. Zabihi, and S. M. Jafari. 2019. Investigating the best Strategy to diminish the Toxicity and Enhance The antibacterial activity Of Graphene Oxide by Chitosan Addition. Carbohydrates Polymers 225:115220. doi:10.1016/j.carbpol.2019.115220.
  • IS 2185-1(2005): Concrete masonry units, part 1: Hollow and solid concrete blocks, CFD 53: Cement matrix products] bureau of Indian standards, manak bhavan, 9 Bahadur shah zafar marg, New Delhi-110002.
  • Jeon, J., S.-G. Jeong, J.-H. Lee, J. Seo, and S. Kim. 2012. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Solar Energy Materials & Solar Cells 101:51–56. doi:10.1016/j.solmat.2012.02.028.
  • Jesumathy, S., M. Udayakumar, and S. Suresh. 2012. Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat and Mass Transfer 12 (6):965–78. https://link.springer.com/article/10.1007/s00231-011-0945-y.
  • Jia, X., Q. Li, C. Ao, R. Hu, T. Xia, Z. Xue, Q. Wang, X. Deng, W. Zhang, and C. Lu. 2020. High thermal conductive shape – Stabilized phase change materials of polyethene glycol/boron nitride @ chitosan composites for thermal energy storage. Composites Part A. 129:105710. Article ID 105710. doi:10.1016/j.compositesa.2019.105710.
  • Jiang, X., R. Lup, F. Peng, Y. Fang, T. Akiyama, and S. Wang. 2015. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano Al203. Application Energy 137:731–37. doi:10.1016/j.apenergy.2014.09.028.
  • Jurcevic, M., S. Nizetic, M. Arici, A. H. A. Tuan, E. Giama, and A. Papadopoulos. 2021. Thermal constant analysis of phase change nanocomposites and discussion on selection strategies with respect to economic constraints. Sustainable Energy Technologies and Assessments 43:100957. doi:10.1016/j.seta.2020.100957.
  • Jurcevic, M., S. Nizetic, M. Arici, and P. Ocłon. 2020. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with a brief overview of safety equipment. Journal of Cleaner Production 274:122963. doi:10.1016/j.jclepro.2020.122963.
  • Kalaiselvam, S., and R. Parameshwaran. 2014. Thermal energy storage technologies for sustainability. 1st Edition, Systems Design, Assessment and Applications, Academic Press, pp 96–97, ISBN: 978-0-12-417291-3. https://doi.org/10.1016/C2013–0–09744–7
  • Khodadadi, J. M., and S. F. Hosseinizadeh. 2007. Nanoparticle enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer 34 (5):534–43. doi:10.1016/j.rser.2013.03.031.
  • Kim, D. S., V. Dhand, K. Y. Rhee, and S. U. Park. 2015. Study on the Effect of Silanization and Improvement in the Tensile Behaviour of Graphene-Chitosan-Composites. Polymer 7 (3):527–51. doi:10.3390/polym7030527.
  • Konuklu, Y., and H. O. Paksoy. 2015. The preparation and characterization of chitosan-Gelatin microcapsules and micro composites with fatty acids as thermal energy storage materials. Energy Technology 3 (5):503–08. http://doi:10.1002/ente.201402178.
  • Kumar, S., S. Arun Prakash, V. Pandiyarajan, N. B. Geetha, A. A. Raj, and R. Velraj. 2019. Effect of phase change material integration in clay hollow brick composite in building envelope for thermal energy-efficient buildings. Journal Building Physics 1–14. https://orcid.org/0000-0002-6763-4708
  • Liu, H., X. Wang, and D. Wu. 2019. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review. Sustainable Energy & Fuels 1–130. doi:10.1039/c9se00019d.
  • Liu, L., M. Xiang, D. Lyu, and Y. Men. 2019. Encapsulation of polar phase change materials via multi emulsification and crosslinking method and its application in buildings. Journal of Applied Polymer Science. 136(32):47837.https://doi:10.1002/app.47837. Article ID.47837.
  • Maraschin, T. G., R. D. S. Correa, L. F. Rodrigues, N. M. Balzarettid, J. A. Malmonge, G. B. Galland, and N. R. D. S. Basso. 2019. Chitosan Nano Composites with Graphene-Based Filler. Materials Research 22 (supplement 1):e20180829,9. doi:10.1590/1980-5373-MR-2018-0829.
  • Mathew, A. P., and K. Oksman. 2015. Processing of Bionanocomposites: Solution Casting. Materials and Energy 35–52. doi:10.1142/9789814566469_0018.
  • Mayilvelnathan, V., and A. ValanArasu. 2019. Characterization and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. ThermochimicaActa 676:94–103. doi:10.1016/j.tca.2019.03.037.
  • Memon, S. A. 2014. Phase change materials integrated into building walls: A state of the art review. Renewable and Sustainable Energy Reviews 31:870–906. doi:10.1016/j.enbuild.2013.05.029.
  • Min, L. 2013. A Nano – Graphite/Paraffin phase change material with high thermal conductivity. Applied Energy 110:163–72. http://dx.doi.org/10.1016/j.apenergy.2013.01.031
  • Naurani, M., N. Hamadami, J. Keramat, A. Moheb, and M. Shahedi. 2016. Thermal behaviour of paraffin – Nano A1203 stabilize by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renewable Energy 88:474–82. doi:10.1016/j.renene.2015.11.043.
  • Nizetic, S., M. Jurcevic, M. Arici, A. Valan Arasu, and G. Xie. 2020. Nano-enhanced phase change materials and fluids in energy applications: A review. Renewable and Sustainable Energy Reviews 129:109931. doi:10.1016/j.rser.2020.109931.
  • Omidi, S., and A. Kakanejadifard. 2018. Eco-friendly synthesis of graphene–chitosan composite hydrogel as an efficient adsorbent for Congo red. RSC Advances 8 (22):12179. doi:10.1039/c8ra00510a.
  • Park Slee, Y., Y. S. Kim, H. M. Lee, J. H. Kim, I. W. Cheong, and W. G. Koh. 2014. Magnetic nanoparticle – Embedded PCM nanocapsules based on Paraffin core and polyurea shell. Colloidal Surface A Physico-chemical Engineering Asp 450:46–51,16. doi:10.1016/j.colsurfa.2014.03.005.
  • Pauline, T., and V. Ashok. 2016. Experimental investigation on properties of concrete containing manufactured sand and recycled aggregates. Journal of Chemical and Pharmaceutical Sciences, Jchps 9 (3):1779–83.
  • Prabakaran, R., S. Sidney, L. C. Dhasan Mohan, and S. S. Harish. 2019. Solidification of graphene-assisted phase change nanocomposites inside a sphere for cold storage applications. Energies 12 (18):3473. doi:10.3390/en12183473.
  • Qi, H., T. Zhang, D. Zhang, K. Wang, and Y. Wang. 2020. Paraffin/Chitosan Composite phase change materials fabricated by Piercing-Solidifying method for thermal energy storage. AIP Advances. 10(3):035218. Article ID.035218. doi:10.1063/1.5140582.
  • Radomska, E., L. Mika, and K. Sztekle. 2020. The Impact of Additives on the Main Properties of Phase Change Materials. Energies 13 (12):3064. doi:10.3390/en13123064.
  • Rufuss, D. D. W., S. Iniyan, L. Suganthi, and P. Davies. 2017. Nanoparticles enhanced phase change material (NPCM) as heat storage in solar still an application for productivity enhancement. Energy Proceedings 141:45–49. https://doi:10.1016/j.egypro.2017.11.009.
  • Sahan, N., M. Fois, and H. Paksoy. 2015. Improving thermal conductivity phase change materials – A study of paraffin nano magnetite composites. Solar Energy Mater, Solar Cells 137:61–67. doi:10.1016/j.solmat.2015.01.027.
  • Senturk, S. B., C. A. DKahraman, and I. Gokce. 2011. Biodegradable PEG/cellulose, PEG/ agarose,PEG/Chitosan blends as shape stabilised phase change materials for latent heat storage. Carbohydrate Polymers 84 (1):141–44. doi:10.1016/j.carbpol.2010.11.015.
  • Sharma, A., A. Shukla, C. R. R. Chen, and S. Dwivedi. 2013. Development of phase change materials for building applications. Energy and Buildings 64:403–07. doi:10.1016/j.enbuild.2013.05.029.
  • Shi, J. –. N., M. –. D. Ger, Y.-M. Liu, Y. C. Fan, C. NiannTsyrWen, and N. W. Pu. 2013. Improving the thermal conductivity and shape stabilization of phase change materials using nano-graphite additives. Carbon 51:365–72. doi:10.1016/j.carbon.2012.08.068.
  • Siriprom, W., K. Chantarasunthon, and K. Teanchai. 2014. Physical and thermal properties of Chitosan. Advanced Materials Research 979:315–18. http://dx.doi.org/10.4028/www.scientific.net/AMR.979.315
  • Sivanathan, A., Q. Dou, Y. Wang, Y. F. Li, J. Corker, Y. H. Zhou, and M. Fan. 2020. phase change materials for building construction: An overview of nano-/ microencapsulation –review article. Nanotechnology Review 9 (1):896–921. doi:10.1515/ntrev-2020-0067.
  • Souayfane, F., F. Fardoun, and P. H. Biwole. 2016. Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings 129:396–431. doi:10.1016/j.enbuild.2016.04.006.
  • Tan, S., A. P. C. Chan, and P. Li. 2019. Nanoencapsulation of organic Phase change materials in water via coacervation using amphoteric copolymer. Industrial EnggChem.Research 68 (46):21080–88. doi:10.1021/acs.iecr.9b02507.
  • Thattoth, A. M., and J. Daniel. Heat transfer analysis of building brick filled with microencapsulated phase change material. AIP Conf. Proc 2236:030002-1–030002-10. doi:10.1063/5.0006853.
  • Tuncbilek, E., M. Arici, M. Krajcík, S. Nizetc, and H. Karabay. 2020. Thermal performance-based optimization of an office wall containing PCM under intermittent cooling operation. Applied Thermal Engineering 179:115750. doi:10.1016/j.applthermaleng.2020.115750.
  • Tunçbilek, E., M. Arici, S. Bouadila, and S. Wonorahardjo. 2020. Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. Journal of Thermal Analysis and CalorimetryJournal of Thermal Analysis and Calorimetry 141 (1):613–24. doi:10.1007/s10973-020-09320-8.
  • Tyagi, V. V., S. C. Kaushik, S. K. Tyagi, and T. Akiyama. 2011. Development of phase change materials based microencapsulated technology for buildings: A review. Renewable and Sustainable Energy Reviews 15 (2):1373–91. doi:10.1016/j.rser.2010.10.006.
  • Vakhshouri, A. R. 2019. Paraffin as Phase Change Material”, Paraffin - an Overview. London, UK: IntechOpen. doi:10.5772/intechopen.90487.
  • Warzoha., R. J., R. M. Weigand, and A. S. Fleischer. 2015. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers. Applied Energy 137:716–25. doi:10.1016/j.apenergy.2014.03.091.
  • Wronska, N., A. Anouar, M. E. Achapy, K. Zawadzka, M. Kedzierska, and K. MiOwska. 2020. Chitosan Functionalized Graphene Nanocomposite Flims. Interfacial Interplace and Biological Activity, Materials – MDPI 13. 0098. doi:10.3390/ma13040998.
  • Xiong, T., L. Zheng, and K. W. Shah. 2020. Nano-enhanced phase change materials (NePCMs): A review of numerical simulations. Applied Thermal Engineering 178:115492. doi:10.1016/j.applthermaleng.2020.115492.
  • Yang, H., H. Cui, W. Tang, L. Zongjin, N. Han, and F. Xing. 2017. A critical review on research progress of graphene/cement-based Composites. Composites Part-A: Applied Science and Manufacturing 102:273–96. doi:10.1016/j.compositesa.2017.07.019.
  • Yang, Y., J. Luo, G. Song, Y. Liu, and G. Tang. 2014. The experimental exploration of nano –Si3N4/ Paraffin on the thermal behaviour of phase change materials. Thermo Chemical Applications 597:101–06. doi:10.1016/j.tca.2014.10.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.