396
Views
2
CrossRef citations to date
0
Altmetric
Review

A Recent Review of Viscosity Models for Nanofluids

ORCID Icon
Pages 1250-1315 | Received 20 Jan 2021, Accepted 30 Sep 2021, Published online: 23 Mar 2022

References

  • Abdolbaqi, M. K., N. A. C. Sidik, A. Amir, R. Mamat, W. H. Azmi, M. N. A. W. M. Yazid, and G. Najafi. 2016a. An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. International Communications in Heat and Mass Transfer 77:22–32. doi:https://doi.org/10.1016/j.icheatmasstransfer.2016.07.007.
  • Abdolbaqi, M. K., N. A. C. Sidik, M. F. A. Rahim, R. Mamat, W. H. Azmi, M. N. A. W. M. Yazid, and G. Najafi. 2016b. Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. International Communications in Heat and Mass Transfer 77:54–63.
  • Abdollahi, A., M. H. K. Darvanjooghi, A. Karimipour, and M. R. Safaei. 2018. Experimental study to obtain the viscosity of CuO-loaded nanofluid: Effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica 53:3739–57.
  • Aberoumand, S., A. Jafarimoghaddam, M. Moravej, H. Aberoumand, and K. Javaherdeh. 2016. Experimental study on the rheological behavior of silver- heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Applied Thermal Engineering 101:362–72.
  • Adewumi, G. A., F. Inambao, M. Sharifpur, and J. P. Meyer. 2018. Investigation of the Viscosity and Stability of Green Nanofluids from Coconut Fibre Carbon Nanoparticles: Effect of Temperature and Mass Fraction. International Journal of Applied Engineering Research 13:8336–42.
  • Adio, S. A., M. Mehrabi, M. Sharifpur, and J. P. Meyer. 2016. Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. International Communications in Heat and Mass Transfer 72:71–83.
  • Adio, S. A., M. Sharifpur, and J. P. Meyer. 2015. Investigation Into Effective Viscosity, Electrical Conductivity, and pH of γ-Al2O3-Glycerol Nanofluids in Einstein Concentration Regime. Heat Transfer Engineering 36:1241–51.
  • Afrand M, Nazari Najafabadi K and Akbari M. (2016). Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Applied Thermal Engineering, 102 45–54. https://doi.org/10.1016/j.applthermaleng.2016.04.002
  • Afrand, M., K. Nazari Najafabadi, and M. Akbari. 2016a. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Applied Thermal Engineering 102:45–54.
  • Afrand, M., K. Nazari Najafabadi, N. Sina, M. R. Safaei, A. S. Kherbeet, S. Wongwises, and M. Dahari. 2016b. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. International Communications in Heat and Mass Transfer 76:209–14.
  • Afrand, M. 2017. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Applied Thermal Engineering 110:1111–19.
  • Afshari, A., M. Akbari, D. Toghraie, and M. E. Yazdi. 2018. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). Journal of Thermal Analysis and Calorimetry 132:1001–15.
  • Aghaei, A., H. Khorasanizadeh, and G. A. Sheikhzadeh. 2018. Measurement of the dynamic viscosity of hybrid engine oil -Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network. Heat Mass Transfer 54:151–61.
  • Aghahadi, M. H., M. Niknejadi, and D. Toghraie. 2019. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. Journal of Molecular Structure 1197:497–507.
  • Ahammed, N., L. G. Asirvatham, and S. Wongwises. 2016. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. Journal of Thermal Analysis and Calorimetry 123:1399–409.
  • Ahmadi Nadooshan, A., H. Eshgarf, and M. Afrand. 2018. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. Journal of Molecular Liquids 253:169–77.
  • Ahmadi, N., S. Saedodin, and S. H. Rostamian. 2020. Experimental investigation of rheological behavior of fullerene/hydraulic oil nanofluid. Chemical Papers 74:3963–73.
  • Akbari, M., M. Afrand, A. Arshi, and A. Karimipour. 2017. An experimental study on rheological behavior of ethylene glycol based nanofluid: Proposing a new correlation as a function of silica concentration and temperature. Journal of Molecular Liquids 233:352–57.
  • Akilu, S., A. T. Baheta, K. Kadirgama, E. Padmanabhan, and K. V. Sharma. 2019. Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β -SiC nanofluids. Journal of Molecular Liquids 284:780–92.
  • Akilu, S., A. T. Baheta, and K. V. Sharma. 2017. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquids 246:396–405.
  • Akilu, S., A. T. Baheta, and K. V. Sharma. 2020. Characterization and modelling of density, thermal conductivity, and viscosity of TiN–W/EG nanofuids. Journal of Thermal Analysis and Calorimetry 140:1999–2010.
  • Akyürek, E. F., K. Geliş, B. Şahin, and E. Manay. 2018. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results in Physics 9:376–89.
  • Al-Wadhahi, M., G. R. Vakili-Nezhaad, and O. Al Ghafri. 2020. Dynamic Viscosity of Graphene- and Ferrous Oxide-Based Nanofluids: Modeling and Experiment. In Thermophysical Properties of Complex Materials (IntechOpen).
  • Al-Waeli, A. H. A., K. Sopian, M. T. Chaichan, H. A. Kazem, H. A. Hasan, and A. N. Al-Shamani. 2017. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conversion and Management 142:547–58.
  • Al-Waeli, A. H. A., M. T. Chaichan, H. A. Kazem, and K. Sopian. 2019a. Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Studies in Thermal Engineering 13:100392.
  • Al-Waeli, A. H. A., M. T. Chaichan, K. Sopian, and H. A. Kazem. 2019b. Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Studies in Thermal Engineering 13:100340.
  • Aladag, B., S. Halelfadl, N. Doner, T. Maré, S. Duret, and P. Estellé. 2012. Experimental investigations of the viscosity of nanofluids at low temperatures. Applied Energy 97:876–80.
  • Alarifi, I. M., A. B. Alkouh, V. Ali, H. M. Nguyen, and A. Asadi. 2019. On the rheological properties of MWCNT-TiO2/oil hybrid nano fluid: An experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles. Powder Technology 355:157–62.
  • Ali, A., S. U. Ilyas, S. Garg, M. Alsaady, K. Maqsood, R. Nasir, A. Abdulrahman, M. Zulfiar, A. B. Mahfouz, A. Ahmed, et al. 2020. Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/ water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network. International Communications in Heat and Mass Transfer 118:104882.
  • Alirezaie, A., S. Saedodin, M. H. Esfe, and S. H. Rostamian. 2017. Investigation of rheological behavior of MWCNT (COOH functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks. Journal of Molecular Liquids 241:173–81.
  • Almanassra, I. W., A. D. Manasrah, U. A. Al-Mubaiyedh, T. Al-Ansari, Z. O. Malaibari, and M. A. Atieh. 2020. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. Journal of Molecular Liquids 304:111025.
  • Amani, M., P. Amani, A. Kasaeian, O. Mahian, F. Kasaeian, and S. Wongwises. 2017. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field. Journal of Magnetism and Magnetic Materials 428:457–63.
  • Amini, F., S. Z. Miry, A. Karimi, and M. Ashjaee. 2018. Experimental Investigation of Thermal Conductivity and Viscosity of SiO2 /Multiwall Carbon Nanotube Hybrid Nanofluid. Journal of Nanoscience and Nanotechnology 18:1–10.
  • Anoop, K. B., T. Sundararajan, and S. K. Das. 2009. Effect of particle size on the convective heat transfer in nanofluid in the developing region. International Journal of Heat and Mass Transfer 52:2189–95.
  • Ansari S, Hussain T, Yahya S Mohd, Chaturvedi P and Sardar N. (2018). Experimental Investigation of Viscosity of Nanofluids Containing Oxide Nanoparticles at Varying Shear Rate. j nanofluids, 7(6), 1075–1080. https://doi.org/10.1166/jon.2018.1536
  • Arani, A. A. A., and F. Pourmoghadam. 2019. Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/ethylene glycol hybrid Nanofluid: Providing new thermal conductivity correlation. Heat and Mass Transfer, 55, 2329–2339.
  • Asadi, A., and F. Pourfattah. 2019. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technology, 343, 296–308.
  • Asadi, A., I. M. Alarif, H. M. Nguyen, and H. Moayedi. 2020. Feasibility of least‑square support vector machine in predicting the efects of shear rate on the rheological properties and pumping power of MWCNT–MgO/oil hybrid nanofuid based on experimental data. Journal of Thermal Analysis and Calorimetry, 143, 1439–1454.
  • Asadi, A., and I. M. Alarifi. 2020. Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: An experimental study. Scientific Reports 10:15182.
  • Asadi, A., M. Asadi, M. Rezaei, M. Siahmargoi, and F. Asadi. 2016. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: An experimental study. International Communications in Heat and Mass Transfer 78:48–53.
  • Asadi, M., and A. Asadi. 2016. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations. International Communications in Heat and Mass Transfer 76:41–45.
  • Aswad, Z. A. R. 1996. A New Approach for Selecting the Best Non-Newtonian Rheological Model. Polymer-Plastics Technology and Engineering 35:233–41.
  • Attari, H., F. Derakhshanfard, and M. H. K. Darvanjooghi. 2017. Effect of temperature and mass fraction on viscosity of crude oil-based nanofluids containing oxide nanoparticles. International Communications in Heat and Mass Transfer 82:103–13.
  • Aybar, H. S., M. Sharifpur, M. R. Azizian, M. Mehrabi, and J. P. Meyer. 2015. A Review of Thermal Conductivity Models for Nanofluids. Heat Transfer Engineering 36:1085–110.
  • Azmi, W. H., K. Abdul Hamid, R. Mamat, K. V. Sharma, and M. S. Mohamad. 2016. Effects of Working Temperature on Thermo-Physical Properties and Forced Convection Heat Transfer of TiO2 Nanofluids in Water - Ethylene Glycol Mixture. Applied Thermal Engineering 106:1190–99.
  • Babita, S., S. K. Sharma, and S. M. Gupta. 2016. Preparation and evaluation of stable nanofluids for heat transfer application: A review. Experimental Thermal and Fluid Science 79:202–12.
  • Bahiraei, M., and M. Hangi. 2016. An empirical study to develop temperature-dependent models for thermal conductivity and viscosity of water- Fe3O4 magnetic nanofluid. Materials Chemistry and Physics 181:333–43.
  • Bao, L., C. Zhong, P. Jie, and Y. Hou. 2019. The effect of nanoparticle size and nanoparticle aggregation on the flow characteristics of nanofluids by molecular dynamics simulation. Advances in Mechanical Engineering 11:168781401988948.
  • Baratpour, M., A. Karimipour, M. Afrand, and S. Wongwises. 2016. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. International Communications in Heat and Mass Transfer 74:108–13.
  • Bardool, R., A. Bakhtyari, F. Esmaeilzadeh, and X. Wang. 2019. Nanofluid viscosity modeling based on the friction theory. Journal of Molecular Liquids 286:110923.
  • Batchelor, G. K. 1977. The effect of brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics 83:97–117.
  • Beisl, S., A. Miltner, and A. Friedl. 2017. Lignin from Micro- to Nanosize: Production Methods. International Journal of Molecular Sciences 18:1244.
  • Benelmekki, M. 2015. An introduction to nanoparticles and nanotechnology. Designing Hybrid Nanoparticles 2053-2571. doi:https://doi.org/10.1088/978-1-6270-5469-0ch1.
  • Bianchi, M., L. Branchini, A. De Pascale, F. Melino, S. Ottaviano, A. Peretto, and N. Torricelli. 2019. Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander. Applied Energy 249:143–56.
  • Brinkman, H. C. 1952. The viscosity of concentrated suspensions and solution. The Journal of Chemical Physics 20:571–81.
  • Chakraborty, S., and P. K. Panigrahi. 2020. Stability of nanofluid: A review. Applied Thermal Engineering 174:115259.
  • Chandrasekar, M., S. Suresh, and A. Chandra Bose. 2010. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science 34:210–16.
  • Chaudhari, S. S., R. R. Chakule, and P. S. Talmale. 2019. Experimental Study of Heat Transfer Characteristics of Al2O3 and CuO Nanofluids for Machining Application. Materials Today: Proceedings 18:788–97.
  • Che Sidik, N. A., M. Mahmud Jamil, W. M. A. Aziz Japar, and I. Muhammad Adamu. 2017. A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews 80:1112–22.
  • Chen, J., and J. Jia. 2017. Experimental study of TiO2 nanofluid coolant for automobile cooling applications. Materials Research Innovations 21:177–81.
  • Chen, L., H. Xie, Y. Li, and W. Yu. 2008. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochimica Acta 477:21–24.
  • Chen, T., C. Qi, J. Tang, G. Wang, and Y. Yan. 2021. Numerical and experimental study on optimization of CPU system cooled by nanofluids. Case Studies in Thermal Engineering 24:100848.
  • Chiam, H. W., W. H. Azmi, N. A. Usri, R. Mamat, and N. M. Adam. 2017. Thermal Conductivity and Viscosity of Al2O3 Nanofluids for Different Based Ratio of Water and Ethylene Glycol Mixture. Experimental Thermal and Fluid Science 81:420–29.
  • Corcione, M. 2011. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management 52:789–93.
  • Corcione, M. 2012. A Semi-Empirical Model for Predicting the Effective Dynamic Viscosity of Nanoparticle Suspensions. Heat Transfer Engineering 33:575–83.
  • Dalkılıç, A. S., Ö. Açıkgöz, B. O. Küçükyıldırım, A. A. Eker, B. Lüleci, C. Jumpholkul, and S. Wongwises. 2018. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. International Communications in Heat and Mass Transfer 97:30–38.
  • Dardan, E., M. Afrand, and A. H. Meghdadi Isfahani. 2016. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Applied Thermal Engineering 109:524–34.
  • Das, P. K., N. Islam, A. K. Santra, and R. Ganguly. 2017. Experimental investigation of thermophysical properties of Al2O3–water nanofluid: Role of surfactants. Journal of Molecular Liquids 237:304–12.
  • Deepak, S. R., and S. Dhinakaran. 2017. Effective viscosity of nanofluids — A modified Krieger–Dougherty model based on particle size distribution (PSD) analysis. Journal of Molecular Liquid 225:20–27.
  • Dehghani, Y., A. Abdollahi, and A. Karimipour. 2019. Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids. Journal of Thermal Analysis and Calorimetry 135:713–28.
  • Demirkır, Ç., and H. Ertürk. 2020. Rheological and thermal characterization of graphene-water nanofluids: Hysteresis phenomenon. International Journal of Heat and Mass Transfer 149:119113.
  • Devendiran, D. K., and V. A. Amirtham. 2016. A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews 60:21–40.
  • Dey, D., P. Kumar, and S. Samantaray. 2017. A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transfer - Asian Research 46:1413–42.
  • Duan, F., D. Kwek, and A. Crivoi. 2011. Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Research Letters 6:248.
  • Duangthongsuk, W., and S. Wongwises. 2009. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science 33:706–14.
  • Einstein, A. 1906. A new determination of molecular dimensions. Annals of Physics 19:289–306.
  • Elcioglu, E. B., A. Guvenc Yazicioglu, A. Turgut, and A. S. Anagun. 2018. Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity. Applied Thermal Engineering 128:973–81.
  • Esfe, M. H., H. Rostamian, M. Rejvani, and M. R. S. Emami. 2018. Rheological behavior characteristics of ZrO2-MWCNT/10w40 hybrid nano-lubricant affected by temperature, concentration, and shear rate: An experimental study and a neural network simulating. Physica. E, Low-dimensional Systems & Nanostructures 102:160–70.
  • Esfe, M. H., S. Saedodin, O. Mahian, and S. Wongwises. 2014a. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. International Communications in Heat and Mass Transfer 58:176–83.
  • Esfe, M. H., S. Saedodin, O. Mahian, and S. Wongwises. 2014b. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. International Journal of Heat and Mass Transfer 73:186–94.
  • Esfe, M. H., S. Saedodin, S. Wongwises, and D. Toghraie. 2014. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry 119:1817–24.
  • Eshgarf, H., and M. Afrand. 2016. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Experimental Thermal and Fluid Science 76:221–27.
  • Ezekwem, C., and A. Dare. 2020. Experimental investigation on viscosity of AlN and SIC nanofluids. United Kingdom: Chemical Engineering Communications.
  • Fedele, L., L. Colla, and S. Bobbo. 2012. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. International Journal of Refrigeration 35:1359–66.
  • Frankel N and Acrivos A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22(6), 847–853. https://doi.org/10.1016/0009-2509(67)80149-0
  • Frankel, N. A., and A. Acrivos. 1967. On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science 22:847–53.
  • Fuskele, V., and R. M. Sarviya. 2017. Recent developments in Nanoparticles Synthesis. Preparation and Stability of Nanofluids 4:4049–60.
  • Gangadevi, R., and B. K. Vinayagam. 2019. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. Journal of Thermal Analysis and Calorimetry 136:199–209.
  • Ganguly, S., and S. Chakraborty. 2009. Effective viscosity of nanoscale colloidal suspensions. Journal of Applied Physics 106:124309.
  • Garoosi, F. 2020. Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technology 366:788–820.
  • Ghadimi, A., and I. H. Metselaar. 2013. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Experimental Thermal and Fluid Science 51:1–9.
  • Ghasemi, S., and A. Karimipour. 2018. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Applied Thermal Engineering 128:189–97.
  • Giwa S O, Sharifpur M, Goodarzi M, Alsulami H and Meyer J P. (2021). Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim, 143(6), 4149–4167. https://doi.org/10.1007/s10973-020-09372-w
  • Giwa, S. O., M. Sharifpur, J. P. Meyer, S. Wongwises, and O. Mahian. 2021b. Experimental measurement of viscosity and electrical conductivity of water‑based γ‑Al2O3/MWCNT hybrid nanofuids with various particle mass ratios. Journal of Thermal Analysis and Calorimetry 143:1037–50.
  • Giwa, S. O., M. Sharifpur, M. Goodarzi, H. Alsulami, and J. P. Meyer. 2021a. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: Experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. Journal of Thermal Analysis and Calorimetry 143:4149–67.
  • Giwa, S. O., M. Sharifpur, M. H. Ahmadi, and J. P. Meyer. 2020. Magnetohydrodynamic convection behaviours of nanofluids in non-square enclosures: A comprehensive review. In Mathematical Methods in the Applied Sciences (Wiley Online Library), 6424.
  • Giwa, S. O., M. Sharifpur, M. H. Ahmadi, and J. P. Meyer. 2021a. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. Journal of Thermal Analysis and Calorimetry 145:2581–623.
  • Giwa, S. O., M. Sharifpur, M. H. Ahmadi, S. M. Sohel Murshed, and J. P. Meyer. 2021b. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe2O3. Nanomaterials 11:136.
  • Goodarzi, M., D. Toghraie, M. Reiszadeh, and M. Afrand. 2019. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. Journal of Thermal Analysis and Calorimetry 136:513–25.
  • Graham, A. L. 1981. On the viscosity of suspensions of solid spheres. Applied Science Research 37:275–86.
  • Haldar, A., S. Chatterjee, A. Kotia, N. Kumar, and S. K. Ghosh. 2020. Analysis of rheological properties of MWCNT/SiO2 hydraulic oil nanolubricants using regression and artificial neural network. International Communications in Heat and Mass Transfer 116:104723.
  • Halelfadl, S., P. Estellé, B. Aladag, N. Doner, and T. Maré. 2013. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. International Journal of Thermal Sciences 71:111–17.
  • Hamid, K. A., W. H. Azmi, M. F. Nabil, R. Mamat, and K. V. Sharma. 2018. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. International Journal of Heat and Mass Transfer 116:1143–52.
  • Han, D., W. F. He, and F. Z. Asif. 2017. Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia 142:2547–53.
  • Hemmat Esfe, M., A. A. Abbasian Arani, and M. Rezaie. 2015a. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. International Communications in Heat and Mass Transfer 66:189–95.
  • Hemmat Esfe, M., and H. Rostamian. 2017. Non-Newtonian power-law behavior of TiO2/SAE 50 Nano-lubricant: An experimental report and new correlation. Journal of Molecular Liquids 232:219–25.
  • Hemmat Esfe, M., M. Afrand, D. Toghraie, and H. Rostamian. 2016a. An experimental study on viscosity of alumina-engine oil: Effects of temperature and nanoparticles concentration. International Communications in Heat and Mass Transfer 76:202–08.
  • Hemmat Esfe, M., M. Afrand, W.-M. Yan, H. Yarmand, D. Toghraie, and M. Dahari. 2016b. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)-SAE40 hybrid nano-lubricant. International Communications in Heat and Mass Transfer 76:133–38.
  • Hemmat Esfe, M., and M. H. Kamyab. 2020. Viscosity analysis of enriched SAE50 by nanoparticles as lubricant of heavy-duty engines. Journal of Thermal Analysis and Calorimetry 140:79–93.
  • Hemmat Esfe, M., and S. Alidoust. 2020. Experimental evaluation of MWCNT–Al2O3 (40–60%)/5W50 hybrid nanofluid and comparison with MWCNT–Al2O3 (35–65%)/5W50 hybrid nanofluid with focus on thermophysical properties and cost performance index. The European Physical Journal Plus 135:817.
  • Hemmat Esfe, M., and S. Esfandeh. 2019. Rheological behavior of CuO/EG:W (20:80 v/v) nanofluid from a thermal perspective. Journal of Thermal Analysis and Calorimetry 135:61–72.
  • Hemmat Esfe, M., and S. Esfandeh. 2020. A new generation of hybrid‑nanofuid: Thermal properties enriched lubricant fluids with controlled viscosity amount. SN Applied Sciences 2:1154.
  • Hemmat Esfe, M., and S. H. Rostamian. 2020. Rheological behavior characteristics of MWCNT-TiO2/EG (40%–60%) hybrid nanofluid affected by temperature, concentration, and shear rate: An experimental and statistical study and a neural network simulating. Physica A: Statistical Mechanics and Its Applications 553:124061.
  • Hemmat Esfe, M., and S. Saedodin. 2014. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Experimental Thermal and Fluid Science 55:1–5.
  • Hemmat Esfe, M., S. Saedodin, A. Asadi, and A. Karimipour. 2015b. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. Journal of Thermal Analysis and Calorimetry 120:1145–49.
  • Hemmat Esfe, M., S. Saedodin, M. Rejvani, and J. Shahram. 2017. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Physica. E, Low-dimensional Systems & Nanostructures 90:194–203.
  • Hemmat Esfe, M., S. Saedodin, O. Mahian, and S. Wongwises. 2014. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: Effects of particle size, temperature, and concentration. International Communications in Heat and Mass Transfer 58:138–46.
  • Hemmat Esfe, M. 2016. The Investigation of Effects of Temperature and Nanoparticles Volume Fraction on the Viscosity of Copper Oxide-ethylene Glycol Nanoflids. Periodica Polytechnica Chemical Engineering 62:43–50.
  • Hemmat Esfe, M. 2018. The Investigation of Effects of Temperature and Nanoparticles Volume Fraction on the Viscosity of Copper Oxide-ethylene Glycol Nanofluids. Periodica Polytechnica Chemical Engineering 62:43–50.
  • Hemmat Esfe, M. 2019. On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids. Journal of Thermal Analysis and Calorimetry 135:97–109.
  • Heyhat, M. M., F. Kowsary, A. M. Rashidi, M. H. Momenpour, and A. Amrollahi. 2013. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Experimental Thermal and Fluid Science 44:483–89.
  • Hojjat, M., S. G. Etemad, R. Bagheri, and J. Thibault. 2011. Rheological characteristics of non-Newtonian nanofluids: Experimental investigation. International Communications in Heat and Mass Transfer 38:144–48.
  • Hosseini, S. M., A. R. Moghadassi, and D. E. Henneke. 2010. A new dimensionless group model for determining the viscosity of nanofluids. Journal of Thermal Analysis and Calorimetry 100:873–77.
  • Hu, X., D. Yin, J. Xie, X. Chen, and C. Bai. 2020b. Experimental study of viscosity characteristics of graphite/engine oil (5 W‑40) nanofluids. Applied Nanoscience, 10, 1743–1756.
  • Hu, X., D. Yin, X. Chen, and G. Xiang. 2020a. Experimental investigation and mechanism analysis: Effect of nanoparticle size on viscosity of nanofluids. Journal of Molecular Liquids, 314, 113604.
  • Huminic, A., G. Huminic, C. Fleaca, F. Dumitrache, and I. Morjan. 2015. Thermal conductivity, viscosity and surface tension of nanofluids based on FeC nanoparticles. Powder Technology 284:78–84.
  • Huminic, A., G. Huminic, C. Fleacă, F. Dumitrache, and I. Morjan. 2019. Thermo-physical properties of water based lanthanum oxide nanofluid An experimental study. Journal of Molecular Liquids 287:111013.
  • Huminic, G., A. Huminic, C. Fleacă, F. Dumitrache, and I. Morjan. 2021. Experimental study on viscosity of water based Fe-Si hybrid nanofluids. Journal of Molecular Liquids 321:114938.
  • Ilyas, S. U., R. Pendyala, and N. Marneni. 2017. Stability of Nanofluids, in: Engineering Applications of Nanotechnology. In Topics in Mining, Metallurgy and Materials Engineering. Cham: Springer, 1–31.
  • Izadi, F., R. Ranjbarzadeh, R. Kalbasi, and M. Afrand. 2018. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid. Physica. E, Low-dimensional Systems & Nanostructures 98:83–89.
  • Jang H, Lee W Suk and Lee J. (2019). Rheological characteristics of non-Newtonian GPTMS-SiO2 nanofluids. International Communications in Heat and Mass Transfer, 106 38–45. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.002
  • Jarahnejad, M., E. B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, B. Palm, M. S. Toprak, and M. Muhammed. 2015. Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheologica Acta 54:411–22.
  • Jehhef, K. A., and M. A. A. A. Siba. 2019. Effect of surfactant addition on the nanofluids properties: A Review. Acta Mechanica Malaysia 2:1–19.
  • Jeong, J., C. Li, Y. Kwon, J. Lee, S. H. Kim, and R. Yun. 2013. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. International Journal of Refrigeration 36:2233–41.
  • Jurčević, M., S. Nižetić, M. Arıcı, and P. Ocłoń. 2020. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. Journal of Cleaner Production 274:122963.
  • Kaggwa, A., and J. K. Carson. 2019. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: A review of recent literature. International Nano Letters 9:277–88.
  • Kaggwa, A., J. K. Carson, M. Atkins, and M. Walmsley. 2019. The effect of surfactants on viscosity and stability of activated carbon, alumina and copper oxide nanofluids. Materials Today: Proceedings 18:510–19.
  • Kallamu, U. M., J. S. Ibrahim, M. Sharifpur, and J. P. Meyer, 2016. EXPERIMENTAL INVESTIGATION ON VISCOSITY OF NANOFLUIDS PREPARED FROM BANANA FIBRE –NANOPARTICLES. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, Spain.
  • Karimi, A., M. A. Abdolahi Sadatlu, and M. Ashjaee. 2015. Experimental Studies on the Viscosity of Fe Nanoparticles Dispersed in Ethylene Glycol and Water Mixture. Thermal Science 20:1661–70.
  • Karimipour, A., S. Ghasemi, M. H. K. Darvanjooghi, and A. Abdollahi. 2018. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. International Communications in Heat and Mass Transfer 92:90–99.
  • Katpatal, D. C., A. B. Andhare, and P. M. Padole. 2018. Viscosity behaviour and thermal conductivity prediction of CuO-blend oil based nano-blended lubricant, in: Proceedings of the Institution of Mechanical Engineers. Presented at the Part J: Journal of Engineering Tribology, 233: 1154–1168.
  • Kazemi, I., M. Sefid, and M. Afrand. 2020. A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: Characterization, stability and viscosity measurements. Powder Technology 366:216–29.
  • Khairul, M. A., K. Shah, E. Doroodchi, R. Azizian, and B. Moghtaderi. 2016. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. International Journal of Heat and Mass Transfer 98:778–87.
  • Khedkar, R. S., N. Shrivastava, S. Shriram.S., and K. L. Wasewar. 2016. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid. International Communications in Heat and Mass Transfer 73:54–61.
  • Khedkar, R. S., S. Kiran. A., S. S. Sonawane, K. Wasewar, and S. Umre, Suresh. 2013. Thermo physical characterization of Paraffin based Fe3O4 nanofluids. Procedia Engineering 51:342–46.
  • Khliyeva, O., V. Zhelezny, N. Khliiev, and Y. Hlek, 2020. The Semi-empirical Approach for Newtonian Nanofluids Viscosity Predicting, in: 2020 IEEE 10th International Conference Nanomaterials: Applications Properties (NAP), Sumy, Ukraine.
  • Khodadadi, H., D. Toghraie, and A. Karimipour. 2018. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technology 342:166–80.
  • Khodadadi, H., S. Aghakhani, H. Majd, R. Kalbasi, S. Wongwises, and M. Afrand. 2018. A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations. International Journal of Heat and Mass Transfer 127:997–1012.
  • Kirithiga, R., and J. Hemalatha. 2020. Investigation of thermophysical properties of aqueous magnesium ferrite nanofluids. Journal of Molecular Liquids 317:113944.
  • Koca, H. D., S. Doganay, A. Turgut, I. H. Tavman, R. Saidur, and I. M. Mahbubul. 2018. Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews 82:1664–74.
  • Kole, M., and T. K. Dey. 2011. Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids. International Journal of Thermal Sciences 50:1741–47.
  • Krieger, I. M., and T. J. Dougherty. 1959. A Mechanism for NonNewtonian Flow in Suspensions of Rigid Spheres. Transactions of the Society of Rheology 3:137–52.
  • Krishnakumar, T. S., A. Sheeba, V. Mahesh, and M. J. Prakash. 2019. Heat transfer studies on ethylene glycol/water nanofluid containing TiO2 nanoparticles. International Journal of Refrigeration 102:55–61.
  • Kwek, D., A. Crivoi, and F. Duan. 2010. Effects of Temperature and Particle Size on the Thermal Property Measurements of Al2O3-Water Nanofluids. Journal of Chemical and Engineering Data 55:5690–95.
  • Le Ba, T., I. Várady, I. E. Lukács, J. Molnár, I. A. Balczár, S. Wongwises, and I. M. Szilágyi. 2021. Experimental investigation of rheological properties and thermal conductivity of SiO2–P25 TiO2 hybrid nanofluids. Journal of Thermal Analysis and Calorimetry 146:493–507.
  • Lee, S. W., S. D. Park, S. Kang, I. C. Bang, and J. H. Kim. 2011. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer 54:433–38.
  • Li, F., L. Li, G. Zhong, Y. Zhai, and Z. Li. 2019. Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids. International Journal of Heat and Mass Transfer 129:278–86.
  • Li, H., L. Wang, Y. He, Y. Hu, J. Zhu, and B. Jiang. 2015a. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Applied Thermal Engineering 88:363–68. doi:https://doi.org/10.1016/j.applthermaleng.2014.10.071.
  • Li, X., C. Zou, T. Wang, and X. Lei. 2015b. Rheological behavior of ethylene glycol-based SiC nanofluids. International Journal of Heat and Mass Transfer 84:925–30.
  • Li, Z., S. Asadi, A. Karimipour, A. Abdollahi, and I. Tlili. 2020. Experimental study of temperature and mass fraction effects on thermal conductivity and dynamic viscosity of SiO2-oleic acid/liquid paraffin nanofluid. International Communications in Heat and Mass Transfer 110:104436.
  • Lin, T.-W., and H. C. Weng. 2018. Electrostatically Stabilized Nanofluid Preparation by Chemical Co-Precipitation and the Effect of Particle Size on Nanofluid Viscosity. Smart Science 6:197–204.
  • Liu, X., H. I. Mohammed, A. S. Ashkezari, A. K. Hussein, and S. Rostami. 2020. An experimental investigation on the rheological behavior of nanofluids made by suspending multi-walled carbon nanotubes in liquid paraffin. Journal of Molecular Liquids, 300: 112269.
  • LotfizadehDehkordi, B., S. N. Kazi, M. Hamdi, A. Ghadimi, E. Sadeghinezhad, and H. S. C. Metselaar. 2013. Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transfer 49:1109–15.
  • Lundgren, T. S. 1972. Slow flow through stationary random beds and suspensions of spheres. Journal of Fluid Mechanics 51:273–99.
  • Maddah, H., R. Aghayari, M. H. Ahmadi, M. Rahimzadeh, and N. Ghasemi. 2018. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90 (50/50)nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). Journal of Thermal Analysis and Calorimetry 134:2275–86.
  • Mahbubul, I. M., T. H. Chong, S. S. Khaleduzzaman, I. M. Shahrul, R. Saidur, B. D. Long, and M. A. Amalina. 2014. Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina–Water Nanofluid. Industrial & Engineering Chemistry Research 53:6677–84.
  • Mashali, F., E. M. Languri, J. Davidson, D. Kerns, and F. Alkhaldi, 2018. An Experimental Study on the Convective Heat Transfer Behaviour of Diamond Nanofluids in Electronic Cooling Applications, in: IMECE2018. Volume 8A: Heat Transfer and Thermal Engineering.
  • Masoumi, N., N. Sohrabi, and A. Behzadmehr. 2009. A new model for calculating the effective viscosity of nanofluids. Journal of Physics D: Applied Physics 42:055501.
  • Meriläinen, A., A. Seppälä, K. Saari, J. Seitsonen, J. Ruokolainen, S. Puisto, N. Rostedt, and T. Ala-Nissila. 2013. Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids. International Journal of Heat and Mass Transfer 61:439–48.
  • Meybodi, M. K., A. Daryasafar, M. M. Koochi, J. Moghadasi, R. B. Meybodi, and A. K. Ghahfarokhi. 2016. A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. Journal of the Taiwan Institute of Chemical Engineers 58:19–27.
  • Meyer, J. P., S. A. Adio, M. Sharifpur, and P. N. Nwosu. 2016. The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models. Heat Transfer Engineering 5:387–421.
  • Minakov, A. V., D. V. Guzei, M. I. Pryazhnikov, V. A. Zhigarev, and V. Y. Rudyak. 2016. Study of turbulent heat transfer of the nanofluids in a cylindrical channel. International Journal of Heat and Mass Transfer 102:745–55.
  • Minea, A. A., and M. G. Moldoveanu. 2018. Overview of Hybrid Nanofluids Development and Benefits. Journal of Engineering Thermophysics 27:507–14.
  • Mishra, P. C., S. Mukherjee, S. K. Nayak, and A. Panda. 2014. A brief review on viscosity of nanofluids. International Nano Letters 4:109–20.
  • Mohammadpoor, M., S. Sabbaghi, M. M. Zerafat, and Z. Manafi. 2019. Investigating heat transfer properties of copper nanofluid in ethylene glycol synthesized through single and two-step routes. International Journal of Refrigeration 99:243–50.
  • Moldoveanu, G. M., C. Ibanescu, M. Danu, and A. A. Minea. 2018. Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: An experimental study. Journal of Molecular Liquids 253:188–96.
  • Mondragón, R., D. Sánchez, R. Cabello, R. Llopis, and J. E. Juliá. 2019. Flat plate solar collector performance using alumina nanofluids: Experimental characterization and efficiency tests. PloS One 14:e0212260–e0212260.
  • Mostafizur, R. M., A. R. Abdul Aziz, R. Saidur, M. H. U. Bhuiyan, and I. M. Mahbubul. 2014. Effect of temperature and volume fraction on rheology of methanol based nanofluids. International Journal of Heat and Mass Transfer 77:765–69.
  • Mousavi, S. B., S. Z. Heris, and M. G. Hosseini. 2019. Experimental investigation of MoS2/diesel oil nanofluid thermophysical and rheological properties. International Communications in Heat and Mass Transfer 108:104298.
  • Mousavi, S. M., F. Esmaeilzadeh, and X. P. Wang. 2019a. A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid nanofluid. Journal of Molecular Liquids 282:323–39.
  • Mousavi, S. M., F. Esmaeilzadeh, and X. P. Wang. 2019b. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/ MgO/TiO2 aqueous ternary hybrid nanofluid. Journal of Thermal Analysis and Calorimetry 137:879–901.
  • Murshed, S. M. S., K. C. Leong, and C. Yang. 2008. Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences 47:560–68.
  • Murshed, S. M. S., M. Sharifpur, S. Giwa, and J. P. Meyer. 2020. Experimental Research and Development on the Natural Convection of Suspensions of Nanoparticles—A Comprehensive Review. Nanomaterials 10:1855.
  • Murshed, S. M. S., and P. Estellé. 2017. A state of the art review on viscosity of nanofluids. A State of the Art Review on Viscosity of Nanofluids 76:1134–52.
  • Mutuku, W. N. 2016. Ethylene glycol (EG)-based nanofluids as a coolant for automotive radiator. Asia Pacific Journal on Computational Engineering 3:1.
  • Nabeel Rashin, M., and J. Hemalatha. 2013. Viscosity studies on novel copper oxide–coconut oil nanofluid. Experimental Thermal and Fluid Science 48:67–72.
  • Nabil, M. F., W. H. Azmi, K. Abdul Hamid, R. Mamat, and F. Y. Hagos. 2017. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. International Communications in Heat and Mass Transfer 86:181–89.
  • Namburu, P. K., D. P. Kulkarni, A. Dandekar, and D. K. Das. 2007. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters 2:67.
  • Nguyen, C. T., F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa. 2007b. Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon. International Journal of Heat and Fluid Flow 28:1492–506.
  • Nguyen, C. T., G. Roy, C. Gauthier, and N. Galanis. 2007a. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Applied Thermal Engineering 27:1501–06.
  • Nielsen, L. E. 1970. Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics 41:4626–27.
  • Nižetić, S., M. Jurčević, M. Arıcı, A. V. Arasu, and G. Xie. 2020. Nano-enhanced phase change materials and fluids in energy applications: A review. Renewable and Sustainable Energy Reviews 129:109931.
  • Omrani, A. N., E. Esmaeilzadeh, M. Jafari, and A. Behzadmehr. 2019. Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diamond and Related Materials 93:96–104.
  • Ouikhalfan, M., A. Labihi, M. Belaqziz, H. Chehouani, B. Benhamou, A. Sarı, and A. Belfkira. 2020. Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2. Journal of Dispersion Science and Technology 41:374–82.
  • Pastoriza-Gallego, M. J., C. Casanova, J. L. Legido, and M. M. Pineiro. 2011. CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria 300:188–96.
  • Phuoc, T. X., and M. Massoudi. 2009. Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids. International Journal of Thermal Sciences 48:1294–301.
  • Prasher, R., D. Song, J. Wang, and P. Phelan. 2006. Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters 89:133108.
  • Qasim, M., M. Sajid Kamran, M. Ammar, M. Ali Jamal, and M. Yasar Javaid. 2020. Heat Transfer Enhancement of an Automobile Engine Radiator using ZnO Water Base Nanofluids. Journal of Thermal Science 29:1010–24.
  • Qiao, Y., W. Sheng, C. He, C. Liu, and Z. Rao. 2021. Experimental study on the effect of different surfactants on the thermophysical properties of graphene filled nanofluids. International Journal of Energy Research 45:10043–63.
  • Rafati, M., A. A. Hamidi, and M. S. Niaser. 2012. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering 45–46:9–14.
  • Rajput, R. K., 2008. A Textbook of Hydraulic Machines. S. Chand Limited.
  • Roscoe, R. 1952. The viscosity of suspensions of rigid spheres. Journal of Applied Physics 3:267–69.
  • Ruhani, B., D. Toghraie, M. Hekmatifar, and M. Hadian. 2019. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data. Physica A: Statistical Mechanics and Its Applications 525:741–51.
  • Sadri, R., G. Ahmadi, H. Togun, M. Dahari, S. N. Kazi, E. Sadeghinezhad, and N. Zubir. 2014. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Research Letters 9:151.
  • Saeedi, A. H., M. Akbari, and D. Toghraie. 2018. An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica. E, Low-dimensional Systems & Nanostructures 99:285–93.
  • Sahoo, R. R., and V. Kumar. 2020. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. International Communications in Heat and Mass Transfer 111:104451.
  • Sahoo, R. R. 2020. Experimental study on the viscosity of hybrid nanofluid and development of a new correlation. Heat and Mass Transfer 56:3023–33.
  • Said Z, El Haj Assad M, Hachicha A Amine, Bellos E, Abdelkareem M Ali, Alazaizeh D Zeyad and Yousef B AA. (2019). Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 112 183–194. https://doi.org/10.1016/j.rser.2019.05.052
  • Sardarabadi, M., M. Passandideh-fard, M. Maghrebi, and M. Ghazikhani. 2017. Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Solar Energy Materials and Solar Cells 161:62–69.
  • Sezer, N., M. A. Atieh, and M. Koç. 2019. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technology 344:404–31.
  • Shah, J., M. Ranjan, V. Davariya, S. K. Gupta, and Y. Sonvane. 2017. Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids. Applied Nanoscience 7:803–13.
  • Shahsavar, A., S. Khanmohammadi, A. Karimipour, and M. Goodarzi. 2019. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. International Journal of Heat and Mass Transfer 131:432–41.
  • Sharifpur, M., A. B. Solomon, J. P. Meyer, J. S. Ibrahim, and B. Immanuel, 2017. THERMAL CONDUCTIVITY AND VISCOSITY OF MANGO BARK/WATER NANOFLUIDS Presented at the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portorož, Slovenia.
  • Shi, Q., Y. Liu, F. Chen, and S. Dong. 2017. Investigation on rheological properties of carbon nanotube nanofluids. Physics and Chemistry of Liquids 57:37–42.
  • Singh, R., O. Sanchez, S. Ghosh, N. Kadimcherla, S. Sen, and G. Balasubramanian. 2015. Viscosity of magnetite–toluene nanofluids: Dependence on temperature and nanoparticle concentration. Physics Letters. A 379:2641–44.
  • Soltani, O., and M. Akbari. 2016. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Physica. E, Low-dimensional Systems & Nanostructures 84:564–70.
  • Subhedar, D. G., B. M. Ramani, and A. Gupta. 2018. Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. Case Studies in Thermal Engineering 11:26–34.
  • Suganthi, K. S., V. L. Vinodhan, and K. S. Rajan. 2014. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Applied Energy 135:548–59.
  • Sundar, L. S., E. V. Ramana, M. K. Singh, and A. C. M. De Sousa. 2012. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chemical Physics Letters 554:236–42.
  • Sundar, L. S., E. V. Ramana, M. K. Singh, and A. C. M. Sousa. 2014a. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. International Communications in Heat and Mass Transfer 56:86–95.
  • Sundar, L. S., E. V. Ramana, M. P. F. Graça, M. K. Singh, and A. C. M. Sousa. 2016b. Nanodiamond-Fe3O4 nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities. International Communications in Heat and Mass Transfer 73:62–74.
  • Sundar, L. S., K. V. Sharma, M. T. Naik, and M. K. Singh. 2013. Empirical and theoretical correlations on viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews 25:670–86.
  • Sundar, L. S., M. J. Hortiguela, M. K. Singh, and A. C. M. Sousa. 2016a. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study. International Communications in Heat and Mass Transfer 76:245–55.
  • Sundar, L. S., M. K. Singh, E. V. Ramana, B. Singh, J. Gracio, and A. C. M. Sousa. 2014b. Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids. Scientific Reports 4:4039.
  • Suresh, S., K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar. 2011. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 388:41–48.
  • Syam Sundar, L., K. V. Sharma, M. K. Singh, and A. Sousa. 2017. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews 68:185–98.
  • Timofeeva, E. V., D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbort. 2010. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21:215703.
  • Toghraie, D., S. M. Alempour, and M. Afrand. 2016. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. Journal of Magnetism and Magnetic Materials 417:243–48.
  • Udawattha, D. S., M. Narayana, and U. P. L. Wijayarathne. 2019. Predicting the effective viscosity of nanofluids based on the rheology of suspensions of solid particles. Journal of King Saud University - Science 31:412–26.
  • Urmi, W., M. M. Rahman, and W. A. W. Hamzah. 2020. An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. International Communications in Heat and Mass Transfer 116:104663.
  • Vakilinejad, A., M. A. Aroon, M. Al-Abri, H. Bahmanyar, B. Al-Ghafri, M. T. Z. Myint, and G. R. Vakili-Nezhaad. 2021. Experimental investigation and modeling of the viscosity of some water-based nanofluids. Chemical Engineering Communications 208:1054–68.
  • Vallejo, J. P., S. Gómez-Barreiro, D. Cabaleiro, C. Gracia-Fernández, J. Fernández-Seara, and L. Lugo. 2018. Flow behaviour of suspensions of functionalized graphene nanoplatelets in propylene glycol–water mixtures. International Communications in Heat and Mass Transfer 91:150–57.
  • Vignesh, V., S. Vijayan, and G. Selvakumar. 2020. EXPERIMENTAL INVESTIGATION AND MECHANISM ANALYSIS: EFFECT OF CONCENTRATION AND TEMPERATURE ON THE VISCOSITY OF NOVEL MWCNT-MUSTARD OIL NANOFLUID. Journal of the Chilean Chemical Society 65:4948–52.
  • Vishnuprasad, S., H. K, and P. V.t. 2019. Experimental study on the convective heat transfer performance and pressure drop of functionalized graphene nanofluids in electronics cooling system. Heat and Mass Transfer 55:2221–34.
  • Wang, J., G. Li, T. Li, M. Zeng, and B. Sundén. 2021. Effect of various surfactants on stability and thermophysical properties of nanofluids. Journal of Thermal Analysis and Calorimetry 143:4057–70.
  • Wole-Osho, I., E. C. Okonkwo, D. Kavaz, and S. Abbasoglu. 2020. An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids. Powder Technology 363:699–716.
  • Xie, H., W. Yu, and W. Chen. 2010. MgO nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. Journal of Experimental Nanoscience 5:463–72.
  • Xu, Y., Q. Nguyen, O. Malekahmadi, R. Hadi, Z. Jokar, A. Mardani, A. Karimipour, R. Ranjbarzadeh, Z. Li, and Q.-V. Bach. 2020. Synthesis and characterization of additive graphene oxide nanoparticles dispersed in water: Experimental and theoretical viscosity prediction of non-Newtonian nanofluid. In Mathematical Methods in the Applied Sciences, (Wiley Online Library).
  • Xuan, Z., Y. Zhai, M. Ma, Y. Li, and H. Wang. 2021. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. Journal of Molecular Liquids 323:114889.
  • Yadav, D., R. Kumar, B. Tiwary, and P. K. Singh. 2021. Rheological characteristics of CeO2, Al2O3 and their hybrid mixture in ethylene glycol base fuid in the wide range of temperature and concentration. Journal of Thermal Analysis and Calorimetry 143:1003–19.
  • Yan, S.-R., R. Kalbasi, Q. Nguyen, and A. Karimipour. 2020. Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: A comprehensive modeling and experimental study. Journal of Molecular Liquids 308:113058.
  • Yang, J., N. Zhao, Z. Li, and C. Sun. 2019. A combined theory model for predicting the viscosity of water-based Newtonian nanofluids containing spherical oxide nanoparticles. Journal of Thermal Analysis and Calorimetry 135:1311–21.
  • Yang, L., and K. Du. 2019. A comprehensive review on the natural, forced, and mixed convection of non‑Newtonian fluids (nanofluids) inside different cavities. Journal of Thermal Analysis and Calorimetry 140:2033–54.
  • Yiamsawas, T., A. S. Dalkilic, O. Mahian, and S. Wongwises. 2013. Measurement and Correlation of the Viscosity of Water-Based Al2O3 and TiO2 Nanofluids in High Temperatures and Comparisons with Literature Reports. Journal of Dispersion Science and Technology 34:1697–703.
  • Yu, F., Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, and P. Tao. 2017. Dispersion stability of thermal nanofluids. Progress in Natural Science: Materials International 27:531–42.
  • Yu, L., Y. Bian, Y. Liu, and X. Xu. 2019. Experimental investigation on rheological properties of water based nanofluids with low MWCNT concentrations. International Journal of Heat and Mass Transfer 135:175–85.
  • Yu, L., Y. Bian, Y. Liu, and X. Xu. 2020. Experimental investigation of rheological properties of low concentrated TiO2/water and MWCNT-TiO2/water hybrid nanofluids. Heat and Mass Transfer 56:2545–56.
  • Zadeh, A. D., and D. Toghraie. 2017. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. Journal of Thermal Analysis and Calorimetry 131:1449–61.
  • Zhai, Y., L. Li, J. Wang, and Z. Li. 2019. Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids. Powder Technology 343:215–24.
  • Zhu, H., D. Han, Z. Meng, D. Wu, and C. Zhang. 2011. Preparation and thermal conductivity of CuO nanofluid via a wet chemical method. Nanoscale Research Letters 6:181.
  • Zyła, G., and J. Fal. 2017. Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: An experimental studies. Thermochimica Acta 650:106–13.
  • Zyła, G. 2017. Viscosity and thermal conductivity of MgO–EG nanofluids. Journal of Thermal Analysis and Calorimetry 129:171–80.
  • Żyła, G. 2020. Nanofluids containing low fraction of carbon black nanoparticles in ethylene glycol: An experimental study on their rheological properties. Journal of Molecular Liquids 297:111732.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.