973
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of preparation methods for improving coke resistance of Ni-Ru/MgAl2O4 catalysts in dry reforming of methane for syngas production

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10755-10765 | Received 08 Mar 2021, Accepted 12 Oct 2021, Published online: 31 Oct 2021

References

  • Abdullah, B., N. A. Abd Ghani, and D.-V. N. Vo. 2017. Recent advances in dry reforming of methane over Ni-based catalysts. Journal of Cleaner Production 162:170–85. doi:10.1016/j.jclepro.2017.05.176.
  • Alipour, Z., M. Rezaei, and F. Meshkani. 2014. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and Engineering Chemistry 20 (5):2858–63. doi:10.1016/j.jiec.2013.11.018.
  • Azzouz, A., D. Nistor, D. Miron, A.V. Ursu, T. Sajin, F. Monette, P. Niquette, R. Hausler. 2006. Assessment of acid–base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochimica Acta. 449(1–2):27–34. doi:10.1016/j.tca.2006.07.019.
  • Bobadilla, L., V. Garcilaso, M. Centeno, and J. Odriozola. 2018. CO2 reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study. Journal of CO2 Utilization 24:509–15. doi:10.1016/j.jcou.2018.01.027.
  • “price of Ruthenium (a) and Nickel (b).” (a) https://pmm.umicore.com/en/prices/ruthenium/https://www.kores.net/komis/price/mineralprice/basemetals/pricetrend/baseMetals.do.
  • Edwards, J., and A. Maitra. 1995. The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Processing Technology 42 (2–3):269–89. doi:10.1016/0378-3820(94)00105-3.
  • Fang, X., Zhang, J., Liu, J., Wang, C., Huang, Q., Xu, X., Peng, H., Liu, W., Wang, X., Zhou, W. 2018. Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides. Journal of CO2 Utilization 25:242–53. doi:10.1016/j.jcou.2018.04.011.
  • Ginsburg, J. M., J. Piña, T. El Solh, and H. I. De Lasa. 2005. Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models. Industrial & Engineering Chemistry Research 44 (14):4846–54. doi:10.1021/ie0496333.
  • Guo, J., H. Lou, H. Zhao, D. Chai, and X. Zheng. 2004. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis. A, General 273 (1–2):75–82. doi:10.1016/j.apcata.2004.06.014.
  • Hu, Y. H., and E. Ruckenstein. 2002. Binary MgO-based solid solution catalysts for methane conversion to syngas. Catalysis Reviews 44 (3):423–53. doi:10.1081/CR-120005742.
  • Jones, G., Jakobsen, J.G., Shim, S.S., Kleis, J., Andersson, M.P., Rossmeisl, J., Abild-Pedersen, F., Bligaard, T., Helveg, S., Hinnemann., et al. 2008. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis. 259(1):147–60. doi:10.1016/j.jcat.2008.08.003.
  • Kumari, R., and S. Sengupta. 2020. Catalytic CO2 reforming of CH4 over MgAl2O4 supported Ni-Co catalysts for the syngas production. International Journal of Hydrogen Energy 45 (43):22775–87. doi:10.1016/j.ijhydene.2020.06.150.
  • Lucci, F. R., M. D. Marcinkowski, T. J. Lawton, and E. C. H. Sykes. 2015. H2 activation and spillover on catalytically relevant Pt–Cu single atom alloys. The Journal of Physical Chemistry C 119 (43):24351–57. doi:10.1021/acs.jpcc.5b05562.
  • Nikoo, M. K., and N. Amin. 2011. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology 92 (3):678–91. doi:10.1016/j.fuproc.2010.11.027.
  • Park, J. E., K. Y. Koo, U. H. Jung, J. H. Lee, H.-S. Roh, and W. L. Yoon. 2015. Syngas production by combined steam and CO2 reforming of coke oven gas over highly sinter-stable La-promoted Ni/MgAl2O4 catalyst. International Journal of Hydrogen Energy 40 (40):13909–17. doi:10.1016/j.ijhydene.2015.08.026.
  • Parsapur, R. K., S. Chatterjee, and K.-W. Huang. 2020. The insignificant role of dry reforming of methane in CO2 emission relief. ACS Energy Letters 5 (9):2881–85. doi:10.1021/acsenergylett.0c01635.
  • Rodriguez-Gomez, A., R. Pereniguez, and A. Caballero. 2018. Nickel particles selectively confined in the mesoporous channels of SBA-15 yielding a very stable catalyst for DRM reaction. The Journal of Physical Chemistry. B 122 (2):500–10. doi:10.1021/acs.jpcb.7b03835.
  • Rostrupnielsen, J., and J. B. Hansen. 1993. CO2-reforming of methane over transition metals. Journal of Catalysis 144 (1):38–49. doi:10.1006/jcat.1993.1312.
  • San-José-Alonso, D., J. Juan-Juan, M. Illán-Gómez, and M. Román-Martínez. 2009. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Applied Catalysis. A, General 371 (1–2):54–59. doi:10.1016/j.apcata.2009.09.026.
  • Sehested, J. 2006. Four challenges for nickel steam-reforming catalysts. Catalysis Today 111 (1–2):103–10. doi:10.1016/j.cattod.2005.10.002.
  • Şener, A. N., M. E. Günay, A. Leba, and R. Yıldırım. 2018. Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis. Catalysis Today 299:289–302. doi:10.1016/j.cattod.2017.05.012.
  • Song, Y., Ozdemir, E., Ramesh, S., Adishev, A., Subramanian, S., Harale, A., Albuali, M., Fadhel, B.A., Jamal, A., Moon D., et al. 2020. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science. 367(6479):777–81. doi:10.1126/science.aav2412.
  • Tengfei, H., L. Yusheng, S. Zhang, J. Zhang, and C. Weijie. 2015. Ethanol dry reforming for syngas production over Ir/CeO2 catalyst. Journal of Rare Earths 33 (1):42–45. doi:10.1016/S1002-0721(14)60381-1.
  • Tsyganok, A. I., M. Inaba, T. Tsunoda, S. Hamakawa, K. Suzuki, and T. Hayakawa. 2003. Dry reforming of methane over supported noble metals: A novel approach to preparing catalysts. Catalysis Communications 4 (9):493–98. doi:10.1016/S1566-7367(03)00130-4.
  • Wang, C., Wang, Y., Chen, M., Liang, D., Yang, Z., Cheng, W., Tang, Z., Wang, J., Zhang, H. 2021a. Recent advances during CH4 dry reforming for syngas production: A mini review. International Journal of Hydrogen Energy 46: 5852-5874. doi:10.1016/j.ijhydene.2020.10.240.
  • Wang, H, et al. 2020b. Hierarchical Fe-modified MgAl 2 O 4 as a Ni-catalyst support for methane dry reforming. Catalysis Science & Technology 10 (20):6987–7001. doi:10.1039/D0CY01119C.
  • Wang, S., G. Lu, and G. J. Millar. 1996. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels 10 (4):896–904. doi:10.1021/ef950227t.
  • Wu, Z., Yang, B., Miao, S., Liu, W., Xie, J., Lee, S., Pellin, M.J., Xiao, D., Su, D., Ma, D. 2019. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane. ACS Catalysis. 9(4):2693–700. doi:10.1021/acscatal.8b02821.
  • Zhang, J., H. Wang, and A. K. Dalai. 2007. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis 249 (2):300–10. doi:10.1016/j.jcat.2007.05.004.
  • Zhang, R.-J., G.-F. Xia, M.-F. Li, W. Yu, N. Hong, and D.-D. Li. 2015. Effect of support on the performance of Ni-based catalyst in methane dry reforming. Journal of Fuel Chemistry and Technology 43 (11):1359–65. doi:10.1016/S1872-5813(15)30040-2.
  • Zhou, H., Yang, B., Miao, S., Liu, W., Xie, J., Lee, S., Pellin, M.J., Xiao, D., Su, D., Ma, D. 2018. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification. Applied Catalysis. B, Environmental 233:143–59. doi:10.1016/j.apcatb.2018.03.103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.