165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sustainable biofuel production from non-edible oils utilizing modified montmorillonite based porous clay heterostructures

, ORCID Icon, , & ORCID Icon
Pages 9956-9973 | Received 06 Oct 2021, Accepted 26 Jan 2022, Published online: 19 Feb 2022

References

  • Abubshait, H. A., A. A. Farag, M. A. El-Raouf, N. A. Negm, and E. A. Mohamed. 2021. Graphene oxide modified thiosemicarbazide nanocomposite as an effective eliminator for heavy metal ions. J. Mol. Liq 327:114790. doi:10.1016/j.molliq.2020.114790.
  • Akpomie, K. G., and F. A. Dawodu. 2016. Acid-modified montmorillonite for sorption of heavy metals from automobile effluent. Beni-Suef Univ. J. Basic Appl. Sci 5:1–12.
  • Al-Sakkari, E. G., N. K. Attia, M. M. Habashy, O. M. Abdeldayem, S. R. Mostafa, S. T. El-Sheltawy, M. F. Abadir, M. K. Mostafa, E. R. Rene, and S. S. E. H. Elnashaie. 2021. A bi-functional alginate-based composite for catalyzing one-pot methyl esters synthesis from waste cooking oil having high acidity. Fuel 306:121637. doi:10.1016/j.fuel.2021.121637.
  • Ali, A., and A. Abdulrahman. 2020. Optimization and sensitivity study of biodiesel synthesis from Jojoba oil using mixed-integer programming. Materwiss. Werksttech 51 (7):920–29. doi:10.1002/mawe.201900160.
  • Altalhi, A. A., E. A. Mohamed, S. M. Morsy, M. T. H. Abou Kana, and N. A. Negm. 2021a. Catalytic manufacture and characteristic valuation of biodiesel-biojet achieved from Jatropha curcas and waste cooking oils over chemically modified montmorillonite clay. J. Mol. Liq 340:117175. doi:10.1016/j.molliq.2021.117175.
  • Altalhi, A. A., E. A. Mohammed, S. M. Morsy, N. A. Negm, and A. A. Farag. 2021b. Catalyzed production of different grade biofuels using metal ions modified activated carbon of cellulosic wastes. Fuel 295:120646. doi:10.1016/j.fuel.2021.120646.
  • Altalhi, A. A., S. M. Morsy, M. T. H. Abou Kana, N. A. Negm, and E. A. Mohamed. 2021c. Pyrolytic conversion of waste edible oil into biofuel using sulphonated modified alumina. Alexandria Eng. J 61 (6):4847–61. doi:10.1016/j.aej.2021.10.038.
  • Amer, A., G. H. Sayed, R. M. Ramadan, A. M. Rabie, N. A. Negm, A. A. Farag, and E. A. Mohammed. 2021a. Assessment of 3-amino-1H-1,2,4-triazole modified layered double hydroxide in effective remediation of heavy metal ions from aqueous environment. J. Mol. Liq 341:116935. doi:10.1016/j.molliq.2021.116935.
  • Anwer, K. E., A. A. Farag, E. A. Mohamed, E. M. Azmy, and G. H. Sayed. 2021. Corrosion inhibition performance and computational studies of pyridine and pyran derivatives for API X-65 steel in 6M H2SO4. J. Ind. Eng. Chem 97:523–38. doi:10.1016/j.jiec.2021.03.016.
  • Babaei, K., A. Bozorg, and A. Tavasoli. 2021. Hydrogen-rich gas production through supercritical water gasification of chicken manure over activated carbon/ceria-based nickel catalysts. J. Anal. Appl. Pyrolysis 159:105318. doi:10.1016/j.jaap.2021.105318.
  • Chintakanan, P., T. Vitidsant, P. Reubroycharoen, P. Kuchonthara, T. Kida, and N. Hinchiranan. 2021. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel 293:120472. doi:10.1016/j.fuel.2021.120472.
  • De Feo, G., A. Di Domenico, C. Ferrara, S. Abate, and L. S. Osseo. 2020. Evolution of waste cooking oil collection in an area with long-standing waste management problems. Sustain 12:1–16.
  • Do Nascimento, A. R., J. A. B. L. R. Alves, M. A. De Freitas Melo, D. M. De Araújo Melo, M. J. B. De Souza, and A. M. G. Pedrosa. 2015. Effect of the acid treatment of montmorillonite clay in the oleic acid esterification reaction. Mater. Res 18 (2):283–87. doi:10.1590/1516-1439.293014.
  • Do, T. H., V. T. Nguyen, N. Q. Dung, M. N. Chu, D. Van Kiet, T. T. K. Ngan, and L. Van Tan. 2021. Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf. Mater. Today Proc 38:3405–13. doi:10.1016/j.matpr.2020.10.834.
  • ElGalad, M. I., K. M. El- Khatib, E. Abdelkader, R. El-Araby, G. El-Diwani, and S. I. Hawash. 2018. Empirical equations and economical study for blending biofuel with petroleum jet fuel. J. Adv. Res 9:43–50. doi:10.1016/j.jare.2017.10.005.
  • Erchamo, Y. S., T. T. Mamo, G. A. Workneh, and Y. S. Mekonnen. 2021. Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci. Rep 11 (1):1–12. doi:10.1038/s41598-021-86062-z.
  • Farag, A. A., E. A. Mohamed, G. H. Sayed, and K. E. Anwer. 2021. Experimental/computational assessments of API steel in 6 M H2SO4 medium containing novel pyridine derivatives as corrosion inhibitors. J. Mol. Liq 330:115705. doi:10.1016/j.molliq.2021.115705.
  • Gao, T., Y. Zhao, Z. Zheng, Q. Zhang, H. Liu, H. Wang, X. Feng, and Q. Meng. 2021. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether. J. Fuel Chem. Technol 49 (10):1495–503. doi:10.1016/S1872-5813(21)60103-2.
  • Goh, B. H. H., C. T. Chong, Y. Ge, H. C. Ong, J.-H. Ng, B. Tian, V. Ashokkumar, S. Lim, T. Seljak, and V. Józsa. 2020. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manag 223:113296. doi:10.1016/j.enconman.2020.113296.
  • Goh, B. H. H., C. T. Chong, H. C. Ong, T. Seljak, T. Katrašnik, V. Józsa, J.-H. Ng, B. Tian, S. Karmarkar, and V. Ashokkumar. 2021. Recent advancements in catalytic conversion pathways for synthetic jet fuel produced from bioresources. Energy Convers. Manag 251:114974.
  • Hadhoum, L., F. Zohra Aklouche, K. Loubar, and M. Tazerout. 2021. Experimental investigation of performance, emission and combustion characteristics of olive mill wastewater biofuel blends fuelled CI engine. Fuel 291:120199. doi:10.1016/j.fuel.2021.120199.
  • Hoang, A. T., A. T. Le, and V. V. Pham. 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244:159–75. doi:10.1016/j.fuel.2019.02.009.
  • Hoang, A. T., S. Nizetic, H. C. Ong, C. T. Chong, A. E. Atabani, and V. V. Pham. 2021a. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. J. Environ. Manage 296:113194.
  • Hoang, A. T., H. C. Ong, I. M. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel, and Y. S. Ok. 2021b. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol 223:106997.
  • Hoff, J. T., D. Gregor, D. Mackay, F. Wania, and C. Q. Jia. 1998. Measurement of the specific surface area of snow with the nitrogen adsorption technique. Environ. Sci. Technol 32 (1):58–62. doi:10.1021/es970225i.
  • Huang, X., L. Chen, F. Ren, C. Yang, J. Li, K. Shi, X. Gou, and W. Wang. 2017. Lewis Acid Rather than Bronsted Acid Sites of Montmorillonite K10 Act as a Powerful and Reusable Green Heterogeneous Catalyst for Rapid Cyanosilylation of Ketones. Synlett 28 (4):439–44. doi:10.1055/s-0036-1588640.
  • Hussain, Z., H. Naz, M. Rafique, H. Gulab, M. Y. Naz, S. A. Sulaiman, and K. M. Khan. 2019. Conversion of spent fat oil into liquid and gaseous fuels through clinker catalyzed pyrolysis. Brazilian J. Chem. Eng 36 (2):949–57. doi:10.1590/0104-6632.20190362s20180429.
  • Iakovlieva, A., S. Boichenko, K. Lejda, O. Vovk, and I. Shkilniuk. 2017. Vacuum Distillation of Rapeseed Oil Esters for Production of Jet Fuel Bio-Additives. Procedia Eng 187:363–70. doi:10.1016/j.proeng.2017.04.387.
  • Jin, X., L. Chen, H. Chen, L. Zhang, W. Wang, H. Ji, S. Deng, and L. Jiang. 2021. XRD and TEM analyses of a simulated leached rare earth ore deposit: Implications for clay mineral contents and structural evolution. Ecotoxicol. Environ. Saf 225:112728. doi:10.1016/j.ecoenv.2021.112728.
  • Krupskaya, V., L. Novikova, E. Tyupina, P. Belousov, O. Dorzhieva, S. Zakusin, K. Kim, F. Roessner, E. Badetti, A. Brunelli, et al. 2019. The influence of acid modification on the structure of montmorillonites and surface properties of bentonites. Appl. Clay Sci 172:1–10. doi:10.1016/j.clay.2019.02.001.
  • Lim, J. H. K., Y. Y. Gan, H. C. Ong, B. F. Lau, W. H. Chen, C. T. Chong, T. C. Ling, and J. J. Klemeš. 2021. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective. Renew. Sustain. Energy Rev 149:136.
  • Long, F., Q. Zhai, P. Liu, X. Cao, X. Jiang, F. Wang, L. Wei, C. Liu, J. Jiang, and J. Xu. 2020. Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel. Renew. Energy 157:1072–80. doi:10.1016/j.renene.2020.05.117.
  • Lv, M., J. Mao, Y. Zhou, R. Zhou, and J. Zhou. 2021. Adsorption performance and mechanism of mycotoxin on montmorillonite modified by organosilicon grafting. Arab. J. Chem 14 (9):103314. doi:10.1016/j.arabjc.2021.103314.
  • Mardiana, S., N. J. Azhari, T. Ilmi, and G. T. M. Kadja. 2022. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 309:122119. doi:10.1016/j.fuel.2021.122119.
  • Margi, N. H., and G. D. Yadav. 2021. Molybdenum oxide modified montmorillonite K10 clay as novel solid acid for flow synthesis of ionone isomers. Mol. Catal 501:111362. doi:10.1016/j.mcat.2020.111362.
  • Martins, R. C., M. J. C. Rezende, M. A. C. Nascimento, R. S. V. Nascimento, and S. P. D. S. Ribeiro. 2020. Synergistic action of montmorillonite with an intumescent formulation: The impact of the nature and the strength of acidic sites on the flame-retardant properties of polypropylene composites. Polymers (Basel) 12 (12):1–20. doi:10.3390/polym12122781.
  • Michot, L. J. 2018. 2 - Determination of surface areas and textural properties of clay minerals. In Schoonheydt, R., Johnston, C.T., Bergaya, F.B.T.-D. in C.S. (Eds.), Surface and Interface Chemistry of Clay Minerals, Vol. 9, 23–47. Elsevier.
  • Mohadesi, M., B. Aghel, A. Gouran, and M. H. Razmehgir. 2021. Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst. Energy, 122536. In Press.
  • Mokhatr Mohamed, M., and H. El-Faramawy. 2021. An innovative nanocatalyst α-Fe2O3/AlOOH processed from gibbsite rubbish ore for efficient biodiesel production via utilizing cottonseed waste oil. Fuel 297:120741. doi:10.1016/j.fuel.2021.120741.
  • Ndé, H. S., P. A. Tamfuh, G. Clet, J. Vieillard, M. T. Mbognou, and E. D. Woumfo. 2019. Comparison of HCl and H2SO4 for the acid activation of a Cameroonian smectite soil clay: Palm oil discolouration and landfill leachate treatment. Heliyon 5 (12):2926. doi:10.1016/j.heliyon.2019.e02926.
  • Negm, N. A., A. M. Rabie, and E. A. Mohammed. 2018. Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: Chromatographic and biofuel performance investigation. Appl. Catal. B Environ 239:36–45. doi:10.1016/j.apcatb.2018.07.070.
  • Negm, N. A., G. H. Sayed, O. I. Habib, F. Z. Yehia, and E. A. Mohamed. 2017a. Heterogeneous catalytic transformation of vegetable oils into biodiesel in one-step reaction using super acidic sulfonated modified mica catalyst. J. Mol. Liq 237:38–45. doi:10.1016/j.molliq.2017.04.076.
  • Negm, N. A., G. H. Sayed, F. Z. Yehia, O. I. H. Dimitry, A. M. Rabie, and E. A. M. Azmy. 2016a. Production of biodiesel production from castor oil using modified montmorillonite clay. Egypt. J. Chem 59:1045–60.
  • Negm, N. A., G. H. Sayed, F. Z. Yehia, O. I. Habib, and E. A. Mohamed. 2017b. Biodiesel production from one-step heterogeneous catalyzed process of Castor oil and Jatropha oil using novel sulphonated phenyl silane montmorillonite catalyst. J. Mol. Liq 234:157–63. doi:10.1016/j.molliq.2017.03.043.
  • Ong, M. Y., S. Nomanbhay, F. Kusumo, R. M. H. Raja Shahruzzaman, and A. H. Shamsuddin. 2021. Modeling and optimization of microwave-based bio-jet fuel from coconut oil: Investigation of response surface methodology (RSM) and artificial neural network methodology (ann). Energies 14 (2):295. doi:10.3390/en14020295.
  • Pelemo, J., F. L. Inambao, and E. I. Onuh. 2020. Potential of used cooking oil as feedstock for hydroprocessing into hydrogenation derived renewable diesel: A review. Int. J. Eng. Res. Technol 13 (3):500–19. doi:10.37624/IJERT/13.3.2020.500-519.
  • Perelomov, L., S. Mandzhieva, T. Minkina, Y. Atroshchenko, I. Perelomova, T. Bauer, D. Pinsky, and A. Barakhov. 2021. The Synthesis of Organoclays Based on Clay Minerals with Different Structural Expansion Capacities. Miner 11 (7):707. doi:10.3390/min11070707.
  • Prabasari, I. G., R. Sarip, and S. N. Rahmayani. 2019. Catalytic Cracking of Used Cooking Oil Using Cobalt-impregnated Carbon Catalysts. Makara J. Sci 23/3:162–68.
  • Rabie, A. M., E. A. Mohammed, and N. A. Negm. 2018. Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. J. Mol. Liq 254:260–66. doi:10.1016/j.molliq.2018.01.110.
  • Rashidi, N. A., E. Mustapha, Y. Y. Theng, N. A. Razak, N. A. Bar, K. B. Baharudin, and D. Derawi. 2021. Advanced biofuels from waste cooking oil via solventless and hydrogen-free catalytic deoxygenation over mesostructured Ni-Co/SBA-15, Ni-Fe/SBA-15, and Co-Fe/SBA-15 catalysts. In Press. Fuel 122695.
  • Sadeek, S. A., E. A. Mohammed, M. Shaban, M. T. H. Abou, and N. A. Negm. 2020. Synthesis, characterization and catalytic performances of activated carbon-doped transition metals during biofuel production from waste cooking oils. J. Mol. Liq 306:112749. doi:10.1016/j.molliq.2020.112749.
  • Sing, K. 2001. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surfaces A Physicochem. Eng. Asp 187–188:3–9. doi:10.1016/S0927-7757(01)00612-4.
  • Soliman, W. M., and X. He. 2015. The Potentials of Jatropha Plantations in Egypt: A Review. Mod. Econ 06 (2):190–200. doi:10.4236/me.2015.62016.
  • Tian, H., Y. Shao, Z. Gao, L. Zhang, S. Zhang, Y. Wang, S. Hu, J. Xiang, and X. Hu. 2021. Sulfated ordinary clay for acid-catalyzed conversion of biomass derivatives: Impacts of abundance and types of acidic sites on catalytic performance. J. Solid State Chem 301:122302. doi:10.1016/j.jssc.2021.122302.
  • Toldra-Reig, F., L. Mora, and F. Toldra. 2020. applied sciences Trends in Biodiesel Production from Animal Fat Waste. Appl. Sci 10:1–17.
  • Tuan Hoang, A., and V. Viet Pham. 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev 148:111265.
  • Valle, B., A. Remiro, N. García-Gómez, A. G. Gayubo, and J. Bilbao. 2019. Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: A review. J. Chem. Technol. Biotechnol 94:670–89.
  • van Dyk, S., and J. Saddler. 2021. Progress in the commercialization of Biojet /Sustainable Aviation Fuels (SAF): Technologies, potential and challenges. IEA Bioenergy. Task 39:95.
  • Vasić, M. V., L. Pezo, J. D. Zdravković, Z. Bačkalić, and Z. Radojević. 2017. The study of thermal behavior of montmorillonite and hydromica brick clays in predicting tunnel kiln firing curve. Constr. Build. Mater 150:872–79. doi:10.1016/j.conbuildmat.2017.06.068.
  • Vieira, B., W. C. Nadaleti, and E. Sarto. 2021. The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification. Renew. Energy 165:657–67. doi:10.1016/j.renene.2020.10.056.
  • Vrbkov, E., E. Vyskoˇ, and M. Lhotka. 2021. Acid Treated Montmorillonite — Eco-Friendly Clay as Catalyst in Carvone Isomerization to Carvacrol. 2 (4):486–98.
  • Wang, W.-C., L. Tao, J. Markham, Y. Zhang, E. Tan, L. Batan, M. Biddy, W.-C. Wang, L. Tao, Y. Zhang, et al., 2016. Review of Biojet Fuel Conversion Technologies. National Renewable Energy Laboratory, Technical Report NREL/TP-5100-66291. 98.
  • Wei, C. Y., P. Y. Chiu, P. N. Hou, H. Matsuda, and G. U. Hung. 2017. The Value of 99mTc ECD SPECT with Statistical Image Analysis on Enhancing the Early Diagnosis of Primary Progressive Aphasia. Clin. Nucl. Med 42 (2):117–20. doi:10.1097/RLU.0000000000001475.
  • Xiao, F., B. Q. Yan, X. Y. Zou, X. Q. Cao, L. Dong, X. J. Lyu, L. Li, J. Qiu, P. Chen, S. G. Hu, et al. 2020. Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids Surfaces A Physicochem. Eng. Asp 587:124311. doi:10.1016/j.colsurfa.2019.124311.
  • Xie, W., and F. Wan. 2019. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J 365:40–50. doi:10.1016/j.cej.2019.02.016.
  • Xie, W., and H. Wang. 2020. Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel. Renew. Energy 145:1709–19. doi:10.1016/j.renene.2019.07.092.
  • Xie, W., and H. Wang. 2021. Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Brönsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils. Fuel 283:118893. doi:10.1016/j.fuel.2020.118893.
  • Zahed, M. A., M. Revayati, N. Shahcheraghi, F. Maghsoudi, and Y. Tabari. 2021. Modeling and optimization of biodiesel synthesis using TiO2–ZnO nanocatalyst and characteristics of biodiesel made from waste sunflower oil. Curr. Res. Green Sustain. Chem 4:100223. doi:10.1016/j.crgsc.2021.100223.
  • Zschocke, A., and S. Scheuermann, 2015. High Biofuel Blends in Aviation (HBBA) 44–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.