306
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Low frequency residential non-intrusive load monitoring based on a hybrid feature extraction tree-learning approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 493-514 | Received 21 Dec 2021, Accepted 18 Feb 2022, Published online: 12 Mar 2022

References

  • Ahmed, A. M., Y. Zhang, and F. Eliassen. 2020. Generative adversarial networks and transfer learning for non-intrusive load monitoring in smart grids.In: 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), IEEE, pp. 1–7.
  • Alshareef, S., and W. G. Morsi. 2015. Application of wavelet-based ensemble tree classifier for non-intrusive load monitoring. In: 2015 IEEE Electrical Power and Energy Conference (EPEC), London, Ontario, Canada, IEEE, pp. 397–401.
  • Batra, N., M. Gulati, A. Singh, and M. B. Srivastava. 2013. It’s different: Insights into home energy consumption in India. In: Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, Roma Italy, pp. 1–8.
  • Batra, N., J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and M. Srivastava. 2014. Nilmtk: An open source toolkit for non-intrusive load monitoring. In: Proceedings of the 5th international conference on Future energy systems, Cambridge United Kingdom, pp. 265–76.
  • Beckel, C., W. Kleiminger, R. Cicchetti, T. Staake, and S. Santini. 2014. The eco data set and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM conference on embedded systems for energy-efficient buildings, Memphis Tennessee, pp. 80–89.
  • Berges, M., E. Goldman, H. S. Matthews, L. Soibelman, and K. Anderson. 2011. User-centered nonintrusive electricity load monitoring for residential buildings. Journal of Computing in Civil Engineering 25 (6):471–80. doi:https://doi.org/10.1061/(ASCE)CP.1943-5487.0000108.
  • Bonfigli, R., E. Principi, M. Fagiani, M. Severini, S. Squartini, and F. Piazza. 2017. Non-intrusive load monitoring by using active and reactive power in additive factorial hidden markov models. Applied Energy 208:1590–607. doi:https://doi.org/10.1016/j.apenergy.2017.08.203.
  • Butner, R. S., D. J. Reid, M. G. Hoffman, G. Sullivan, and J. Blanchard. 2013. Non-intrusive load monitoring assessment: Literature review and laboratory protocol. Tech. rep., Pacific Northwest National Lab.(PNNL), Richland, WA.
  • Chang, -H.-H., P. W. Wiratha, and N. Chen. 2014. A non-intrusive load monitoring system using an embedded system for applications to unbalanced residential distribution systems. Energy Procedia 61:146–50. doi:https://doi.org/10.1016/j.egypro.2014.11.926.
  • Chen, T., and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco California, pp. 785–94.
  • Chowdhury, D., and M. M. Hasan. 2019. Non-intrusive load monitoring using ensemble empirical mode decomposition and random forest classifier. In: Proceedings of the International Conference on Digital Image and Signal Processing (DISP), Oxford, UK, pp. 29–30.
  • Egarter, D., V. P. Bhuvana, and W. Elmenreich. 2014. Paldi: online load disaggregation via particle filtering. IEEE Transactions on Instrumentation and Measurement 64 (2):467–77. doi:https://doi.org/10.1109/TIM.2014.2344373.
  • Ehrhardt-Martinez, K., K. A. Donnelly, and S. Laitner. 2010. Advanced metering initiatives and residential feedback programs: A meta-review for household electricity-saving opportunities. Washington, DC: American Council for an Energy-Efficient Economy.
  • Faustine, A., L. Pereira, H. Bousbiat, and S. Kulkarni. 2020. Unet-nilm: A deep neural network for multi-tasks appliances state detection and power estimation in NILM. In: Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring, Virtual event (Japan), pp. 84–88.
  • Gomes, E., and L. Pereira. 2020. Pb-nilm: pinball guided deep non-intrusive load monitoring. IEEE Access 8:48386–98. doi:https://doi.org/10.1109/ACCESS.2020.2978513.
  • Gopinath, R., M. Kumar, C. P. C. Joshua, and K. Srinivas. 2020. Energy management using non-intrusive load monitoring techniques-state-of-the-art and future research directions. Sustainable Cities and Society 62:102411. doi:https://doi.org/10.1016/j.scs.2020.102411.
  • Harell, A., S. Makonin, and I. V. Bajić. 2019. Wavenilm: A causal neural network for power disaggregation from the complex power signal. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, IEEE, pp. 8335–39.
  • Hart, G. W. 1989. Residential energy monitoring and computerized surveillance via utility power flows. IEEE Technology and Society Magazine 8 (2):12–16. doi:https://doi.org/10.1109/44.31557.
  • Hart, G. W. 1992. Nonintrusive appliance load monitoring. Proceedings of the IEEE 80 (12):1870–91. doi:https://doi.org/10.1109/5.192069.
  • Hasan, M., D. Chowdhury, K. Hasan, and A. S. Md. 2019. Statistical features extraction and performance analysis of supervised classifiers for non-intrusive load monitoring. Engineering Letters 27(4).
  • He, K., L. Stankovic, J. Liao, and V. Stankovic. 2016. Non-intrusive load disaggregation using graph signal processing. IEEE Transactions on Smart Grid 9 (3):1739–47. doi:https://doi.org/10.1109/TSG.2016.2598872.
  • Himeur, Y., A. Alsalemi, F. Bensaali, and A. Amira. 2020. Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree. Applied Energy 267:114877. doi:https://doi.org/10.1016/j.apenergy.2020.114877.
  • Ibn-Mohammed, T., R. Greenough, S. Taylor, L. Ozawa-Meida, and A. Acquaye. 2013. Operational vs. embodied emissions in buildings—a review of current trends. Energy and Buildings 66:232–45. doi:https://doi.org/10.1016/j.enbuild.2013.07.026.
  • Jiang, L., J. Li, S. Luo, S. West, and G. Platt. 2012. Power load event detection and classification based on edge symbol analysis and support vector machine. Applied Computational Intelligence and Soft Computing 2012:1–10. doi:https://doi.org/10.1155/2012/742461.
  • Kaselimi, M., N. Doulamis, A. Doulamis, A. Voulodimos, and E. Protopapadakis. 2019a. Bayesian-optimized bidirectional lstm regression model for non-intrusive load monitoring. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, IEEE, pp. 2747–51.
  • Kaselimi, M., N. Doulamis, A. Voulodimos, A. Doulamis, and E. Protopapadakis. 2020. Energan++: a generative adversarial gated recurrent network for robust energy disaggregation. IEEE Open Journal of Signal Processing 2:1–16. doi:https://doi.org/10.1109/OJSP.2020.3045829.
  • Kaselimi, M., E. Protopapadakis, A. Voulodimos, N. Doulamis, and A. Doulamis. 2019b. Multi-channel recurrent convolutional neural networks for energy disaggregation. IEEE Access 7:81047–56. doi:https://doi.org/10.1109/ACCESS.2019.2923742.
  • Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017. Lightgbm: a highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30; 3146–54.
  • Kelly, J., and W. Knottenbelt. 2015a. The uk-dale dataset, domestic appliance-level electricity demand and whole-house demand from five uk homes. Scientific Data 2 (1):1–14. doi:https://doi.org/10.1038/sdata.2015.7.
  • Kelly, J., and W. Knottenbelt. 2015b. Neural nilm: Deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul South Korea, pp. 55–64.
  • Kim, H., M. Marwah, M. Arlitt, G. Lyon, and J. Han.2011. Unsupervised disaggregation of low frequency power measurements. In: Proceedings of the 2011 SIAM international conference on data mining, SIAM, Mesa, Arizona USA, pp. 747–58.
  • Klemenjak, C., S. Makonin, and W. Elmenreich. 2020. Towards comparability in non-intrusive load monitoring: On data and performance evaluation. In: 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), IEEE, pp. 1–5.
  • Kolter, J. Z., and T. Jaakkola. 2012. Approximate inference in additive factorial hmms with application to energy disaggregation. Artificial Intelligence and Statistics, PMLR 1472–82.
  • Kolter, J. Z., and M. J. Johnson. 2011. Redd: A public data set for energy disaggregation research, In: Workshop on data mining applications in sustainability (SIGKDD), San Diego, CA, Vol. 25, pp. 59–62.
  • Krystalakos, O., C. Nalmpantis, and D. Vrakas. 2018. Sliding window approach for online energy disaggregation using artificial neural networks. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence, Patras, Greece, pp. 1–6.
  • Liu, Q., K. M. Kamoto, X. Liu, M. Sun, and N. Linge. 2019. Low-complexity non-intrusive load monitoring using unsupervised learning and generalized appliance models. IEEE Transactions on Consumer Electronics 65 (1):28–37. doi:https://doi.org/10.1109/TCE.2019.2891160.
  • Lusis, P., K. R. Khalilpour, L. Andrew, and A. Liebman. 2017. Short-term residential load forecasting: impact of calendar effects and forecast granularity. Applied Energy 205:654–69. doi:https://doi.org/10.1016/j.apenergy.2017.07.114.
  • Machlev, R., J. Belikov, Y. Beck, and Y. Levron. 2019. Mo-nilm: a multi-objective evolutionary algorithm for nilm classification. Energy and Buildings 199:134–44. doi:https://doi.org/10.1016/j.enbuild.2019.06.046.
  • Makonin, S., F. Popowich, L. Bartram, B. Gill, and I. V. Bajić. 2013. Ampds: A public dataset for load disaggregation and eco-feedback research. In: 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada: IEEE, pp. 1–6.
  • Mayhorn, E. T., G. P. Sullivan, J. M. Petersen, R. S. Butner, and E. M. Johnson. 2016. Load disaggregation technologies: Real world and laboratory performance, Tech. Rep. PNNL-SA-116560, Pacific Northwest National Laboratory (PNNL), Richland, WA
  • Moghadasi, M., N. Izadyar, A. Moghadasi, and H. Ghadamian. 2021. Applying machine learning techniques to implement the technical requirements of energy management systems in accordance with iso 50001: 2018, an industrial case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:https://doi.org/10.1080/15567036.2021.2011989.
  • Monacchi, A., D. Egarter, W. Elmenreich, S. D’Alessandro, and A. M. Tonello. 2014. Greend: An energy consumption dataset of households in Italy and Austria. In: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, IEEE, pp. 511–16.
  • Murray, D., L. Stankovic, and V. Stankovic. 2017. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Scientific Data 4 (1):1–12. doi:https://doi.org/10.1038/sdata.2016.122.
  • Murray, D., L. Stankovic, V. Stankovic, S. Lulic, and S. Sladojevic. 2019. Transferability of neural network approaches for low-rate energy disaggregation. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, IEEE, pp. 8330–34.
  • Nalmpantis, C., and D. Vrakas. 2020. On time series representations for multi-label NILM. Neural Computing & Applications 32 (23):17275–90. doi:https://doi.org/10.1007/s00521-020-04916-5.
  • Neenan, B., J. Robinson, and R. Boisvert. 2009. Residential electricity use feedback: A research synthesis and economic framework. Electric Power Research Institute 3:123–129.
  • Nejat, P., F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. A. Majid. 2015. A global review of energy consumption, co2 emissions and policy in the residential sector (with an overview of the top ten co2 emitting countries. Renewable and Sustainable Energy Reviews 43:843–62. doi:https://doi.org/10.1016/j.rser.2014.11.066.
  • Pereira, L., and N. Nunes. 2018. Performance evaluation in non-intrusive load monitoring: datasets, metrics, and tools—a review. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery 8 (6):e1265.
  • Picon, T., M. N. Meziane, P. Ravier, G. Lamarque, C. Novello, J.-C. L. Bunetel, and Y. Raingeaud. 2016. Cooll: controlled on/off loads library, a public dataset of high-sampled electrical signals for appliance identification. arXiv preprint arXiv:1611.05803.
  • Piga, D., A. Cominola, M. Giuliani, A. Castelletti, and A. E. Rizzoli. 2015. Sparse optimization for automated energy end use disaggregation. IEEE Transactions on Control Systems Technology 24 (3):1044–51. doi:https://doi.org/10.1109/TCST.2015.2476777.
  • Rehman, A. U., T. T. Lie, B. Vallès, and S. R. Tito. 2019. Event-detection algorithms for low sampling nonintrusive load monitoring systems based on low complexity statistical features. IEEE Transactions on Instrumentation and Measurement 69 (3):751–59. doi:https://doi.org/10.1109/TIM.2019.2904351.
  • Robert, A., and M. Kummert. 2012. Designing net-zero energy buildings for the future climate, not for the past. Building and Environment 55:150–58. doi:https://doi.org/10.1016/j.buildenv.2011.12.014.
  • Schirmer, P. A., and I. Mporas. 2019. Statistical and electrical features evaluation for electrical appliances energy disaggregation. Sustainability 11 (11):3222. doi:https://doi.org/10.3390/su11113222.
  • Shin, C., S. Rho, H. Lee, and W. Rhee. 2019. Data requirements for applying machine learning to energy disaggregation. Energies 12 (9):1696. doi:https://doi.org/10.3390/en12091696.
  • Singh, M., S. Kumar, S. Semwal, and R. Prasad. 2015. Residential load signature analysis for their segregation using wavelet—svm. In Power electronics and renewable energy systems, 863–71. Springer.
  • Tan, D., M. Suvarna, Y. S. Tan, J. Li, and X. Wang. 2021. A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing. Applied Energy 291 291:116808. doi:https://doi.org/10.1016/j.apenergy.2021.116808.
  • Valenti, M., R. Bonfigli, E. Principi, and S. Squartini. 2018. Exploiting the reactive power in deep neural models for non-intrusive load monitoring. In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, IEEE, pp. 1–8.
  • Xing, Y., N. Hewitt, and P. Griffiths. 2011. Zero carbon buildings refurbishment —-a hierarchical pathway. Renewable and Sustainable Energy Reviews 15 (6):3229–36. doi:https://doi.org/10.1016/j.rser.2011.04.020.
  • Yang, D., X. Gao, L. Kong, Y. Pang, and B. Zhou. 2020. An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance. IEEE Transactions on Consumer Electronics 66 (2):173–82. doi:https://doi.org/10.1109/TCE.2020.2977964.
  • Yang, M., X. Li, and Y. Liu. 2021. Sequence to point learning based on an attention neural network for nonintrusive load decomposition. Electronics 10 (14):1657. doi:https://doi.org/10.3390/electronics10141657.
  • Yue, Z., C. R. Witzig, D. Jorde, and H.-A. Jacobsen. 2020. Bert4nilm: A bidirectional transformer model for non-intrusive load monitoring. In: Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring, Virtual Event (Japan), pp. 89–93.
  • Zhang, G., G. Wang, H. Farhangi, and A. Palizban. 2015. Residential electric load disaggregation for low-frequency utility applications, In: 2015 IEEE Power & Energy Society General Meeting, Denver, USA, IEEE, pp. 1–5.
  • Zhang, C., M. Zhong, Z. Wang, N. Goddard, and C. Sutton. 2018. Sequence-to-point learning with neural networks for non-intrusive load monitoring. In: Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, Vol. 32.
  • Zhao, B., L. Stankovic, and V. Stankovic. 2016. On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access 4:1784–99. doi:https://doi.org/10.1109/ACCESS.2016.2557460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.