205
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Thermal and energy performance of a nearly zero-energy building in Mediterranean climate: the gap between designed and monitored loads of space heating and cooling systems

ORCID Icon, , , , &
Pages 732-747 | Received 24 Nov 2021, Accepted 26 Feb 2022, Published online: 12 Mar 2022

References

  • Ascione, F., N. Bianco, F. De Rossi, R. F. De Masi, and G. P. Vanoli. 2016. Concept design and energy performance of a net zero-energy building in mediterranean climate. Procedia Engineering 169:26–37. doi:https://doi.org/10.1016/j.proeng.2016.10.004.
  • Ascione, F., M. Borrelli, R. F. De Masi, F. de Rossi, and G. P. Vanoli. 2019a. A framework for NZEB design in mediterranean climate: design, building and set-up monitoring of a lab- small villa. Solar Energy 184:11–29. doi:https://doi.org/10.1016/j.solener.2019.03.083.
  • Ascione, F., M. Borrelli, R. F. De Masi, F. de Rossi, and G. P. Vanoli. 2019b. Analysis of monitoring data for a nZEB in Mediterranean climate. IOP Conf. Ser. Mater. Sci. Eng 609 (7):072038. doi:https://doi.org/10.1088/1757-899X/609/7/072038.
  • ASHRAE climatic design conditions 2009/2013/2017. https://www.energyplus.net/. Accessed on May 5, 2021
  • ASHRAE climatic design conditions 2009/2013/2017. https://www.designbuilder.co.uk//. Accessed on May 5, 2021.
  • ASHRAE climatic design conditions 2009/2013/2017 ( ashrae-meteo.info); 2021.
  • Aste, N., R. S. Adhikari, C. Del Pero, and F. Leonforte. 2017. Multi-functional integrated system for energy retrofit of existing buildings: a solution towards nZEB standards. Energy Procedia 105 (17):2811–17. doi:https://doi.org/10.1016/j.egypro.2017.03.608.
  • Attia, S., P. Eleftheriou, F. Xenib, R. Morlot, C. Ménézo, V. Kostopoulos, M. Betsi, I. Kalaitzoglou, L. Lorenzo Pagliano, M. Cellura, et al. 2017. (2017). Overview and future challenges of nearly zero energy buildings(nZEB) design in Southern Europe. Energy and Buildings 155:439–58. doi:https://doi.org/10.1016/j.enbuild.2017.09.043.
  • Belussi, L., B. Barozzi, A. Bellazzi, L. Danza, A. Devitofrancesco, C. Fanciulli, M. Ghellere, G. Guazzi, I. Meroni, F. Salamone, et al. 2019. A review of performance of zero energy buildings and energy efficiency solutions. Journal of Building Engineering 25:100772.
  • Carpino, C., E. Loukou, P. Heiselberg, and N. Arcuri. Energy performance gap of a nearly Zero Energy Building (nZEB) in Denmark: The influence of occupancy modelling. Building Research & Information 488:2020 899–92.
  • Cholewa, T., C. A. Balaras, S. Nižetić, and A. Siuta-Olcha. 2020. On calculated and actual energy savings from thermal building renovations – Long term field evaluation of multifamily buildings. Energy and Buildings 223 223:110145. doi:https://doi.org/10.1016/j.enbuild.2020.110145.
  • Colclough, S., R. O. Hegarty, M. Murray, D. Lennon, E. Rieux, M. Colclough, and O. Kinnane. 2022. Post occupancy evaluation of 12 retrofit nZEB dwellings: The impact of occupants and high in-use interior temperatures on the predictive accuracy of the nZEB energy standard. Energy and Buildings 254:111563. doi:https://doi.org/10.1016/j.enbuild.2021.111563.
  • D’Agostino, D., S. Tsemekidi Tzeiranaki, P. Zangheri, and P. Bertoldi. 2021. Assessing Nearly Zero Energy Buildings (NZEBs) development in Europe. Energy Strategy Reviews 36:100680. doi:https://doi.org/10.1016/j.esr.2021.100680.
  • den Broma, P., A. Meijera, and H. Visscher. 2019. Actual energy saving effects of thermal renovations in dwellings—longitudinal data analysis including building and occupant characteristics. Energy and Buildings 182:251–63. doi:https://doi.org/10.1016/j.enbuild.2018.10.025.
  • European Committee for Standardization. 2013a. Standard EN 14511-2: 2013, Air conditioners, liquid chilling packages and heat pumps, with electrically driven com-pressors, for space heating and cooling – Part 2: Test conditions, (Bruxelles: CEN).
  • European Committee for Standardization, Standard EN 14825:2013, Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling – Testing and rating at part load conditions and calculation of seasonal performance, 2013b.
  • European Union. 2018. 2018 Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union L: 156/75.
  • Guillén-Lambea, S., B. Rodríguez-Soria, and J. M. Marín. 2016. Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renewable and Sustainable Energy Reviews 62:561–74. doi:https://doi.org/10.1016/j.rser.2016.05.021.
  • Guillén-Lambea, S., B. Rodríguez-Soria, and J. H. Marín. 2017. Comfort settings and energy demand for residential nZEB in warm climates. Applied Energy 202:471–86. doi:https://doi.org/10.1016/j.apenergy.2017.05.163.
  • Hematian, A., Y. Ajabshirchi, S. F. Ranjbar, and M. Taki. 2021. An experimental analysis of a solar-assisted heat pump (SAHP) system for heating a semisolar greenhouse. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (14):1724–44. doi:https://doi.org/10.1080/15567036.2019.1663308.
  • Hosseini, S. M., R. Shirmohammadi, and A. Aslani. Achieving to a low carbon-energy commercial building in the hot-dry climate area. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Published online. 15 October 2021. doi:https://doi.org/10.1080/15567036.2020.1826013
  • Italian Committee for Standardization. 2008. Standard UNI TS 11300 part 1: 2008, Energy performance of buildings: Evaluation of energy need for space heating and cooling.
  • Italian Organisation for Stardardisation (UNI). UNI 10349-1:2016, Heating and cooling of buildings -Climatic data -Part 1: Monthly means for evaluation of energy need for space heating and cooling and methods for splitting global solar irradiance into the direct and diffuse parts and for calculate the solar irradiance on tilted planes; 2021.
  • Javier García-Ballano, C., A. Ruiz-Varona, C. Monné Bailo, and C. Cabello Matud. 2022. Monitoring of housing blocks in Zaragoza (Spain) to validate the energy savings calculation method for the renovation of nZEB dwellings. Energy and Buildings 256 111737. doi:https://doi.org/10.1016/j.enbuild.2021.111737.
  • Kheradmand, M., Z. Abdollahnejad, and F. Pacheco-Torgal. 2020. Alkali-activated cement-based binder mortars containing phase change materials (PCMs): Mechanical properties and cost analysis. European Journal of Environmental and Civil Engineering 24 (8):1068–90. doi:https://doi.org/10.1080/19648189.2018.1446362.
  • Lu, Y., T. Sood, R. Chang, and L. Liao. 1–13. Factors impacting integrated design process of net zero energy buildings: An integrated framework. International Journal of Construction Management. Published Online 30 March 2020. doi:https://doi.org/10.1080/15623599.2020.1742625.
  • Magrini, A., G. Lentini, S. Cuman, A. Bodrato, and L. Marenco. 2020. (2020). From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge - The most recent European trends with some notes on the energy analysis of a forerunner PEB example. Developments in the Built Environment 3:100019. doi:https://doi.org/10.1016/j.dibe.2020.100019.
  • McElroy, D. J., I. Rosenow, and J. Rosenow. Policy implications for the performance gap of low-carbon building technologies. Building Research & Information 475:2019 611–623.
  • McQuiston, F. C., and J. D. Spitler. 1992. Heating and cooling load calculation manual. GA, U.S.A: ASHRAE press.
  • Moga, L., and A. Bucur. 2018. Nano insulation materials for application in nZEB. Procedia Manufacturing 22:309–16. doi:https://doi.org/10.1016/j.promfg.2018.03.047.
  • Reda, F., and F. Zarrin. 2019. Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries. Applied Energy 237 (19):598–617. doi:https://doi.org/10.1016/j.apenergy.2019.01.029.
  • Stasi, R., S. Liuzzi, S. Paterno, F. Ruggiero, P. Stefanizzi, and A. Stragapede. 2020. Combining bioclimatic strategies with efficient HVAC plants to reach nearly-zero energy building goals in Mediterranean climate. Sustainable Cities and Society 63 (20):102479. doi:https://doi.org/10.1016/j.scs.2020.102479.
  • Wemhoener, C., W. Hässig, S. Wyss, and J. Staubli. 2017. Heat pump application in nearly zero energy buildings. Science and Technology for the Built Environment 23 (4):637–50. doi:https://doi.org/10.1080/23744731.2016.1239467.
  • Wu, W., and H. M. Skye. 2018. Progress in ground-source heat pumps using natural refrigerants. International Journal of Refrigeration 92:70–85. doi:https://doi.org/10.1016/j.ijrefrig.2018.05.028.
  • Wu, W., and H. M. Skye. 2021. (2021). Residential net-zero energy buildings: Review and perspective. Renewable and Sustainable Energy Reviews 142:110859. doi:https://doi.org/10.1016/j.rser.2021.110859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.