361
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A comparative assessment on life cycle analysis of the biodiesel fuels produced from soybean, Jatropha, Calophyllum inophyllum, and microalgae

, , , , , ORCID Icon & ORCID Icon show all
Pages 3253-3272 | Received 08 Oct 2021, Accepted 22 Feb 2022, Published online: 26 Apr 2022

References

  • Abbas, J., S. Hussain, M. J. Iqbal, H. Nadeem, M. Qasim, S. Hina, and F. Hafeez. 2016. Oil industry waste: A potential feedstock for biodiesel production. Environmental Technology 37 (16):2082–87. doi:10.1080/09593330.2016.1141997.
  • Abomohra, A. E.-F., A. H. El-Naggar, and A. A. Baeshen. 2018. Potential of macroalgae for biodiesel production: Screening and evaluation studies. Journal of Bioscience and Bioengineering 125 (2):231–37. doi:10.1016/j.jbiosc.2017.08.020.
  • Ajayebi, A., E. Gnansounou, and J. Kenthorai Raman. 2013. Comparative life cycle assessment of biodiesel from algae and jatropha: A case study of India. Bioresource Technology 150:429–37. doi:10.1016/j.biortech.2013.09.118.
  • Ali, M., R. Sultana, S. Tahir, I. Watson, and M. Saleem. 2017. Prospects of microalgal biodiesel production in Pakistan – A review. Renewable and Sustainable Energy Reviews 80:1588–96. doi:10.1016/j.rser.2017.08.062.
  • Amalia Kartika, I., M. Cerny, V. Vandenbossche, L. Rigal, C. Sablayrolles, C. Vialle, O. Suparno, D. Ariono, and P. Evon. 2018. Direct Calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture. Fuel 221:159–64. doi:10.1016/j.fuel.2018.02.080.
  • Arumugam, A., and P. Sankaranarayanan. 2020. Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil. Renewable Energy 153:1272–82. doi:10.1016/j.renene.2020.02.101.
  • Atluri, R., B. Ashok, K. Nanthagopal, M. Pathy, A. Tambare, P. Mali, P. Phuke, S. Patil, and S. Rayapati. 2019. Influence of hexanol as additive with Calophyllum inophyllum biodiesel for CI engine applications. Fuel 249:472–85. doi:10.1016/j.fuel.2019.03.072.
  • Awogbemi, O., D. V. Kallon, E. I. Onuh, and V. S. Aigbodion. 2021. An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies 14 (18). doi: 10.3390/en14185687.
  • Azam, M. M., A. Waris, and N. Nahar. 2005. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass & Bioenergy 29 (4):293–302. doi:10.1016/j.biombioe.2005.05.001.
  • Balat, M. 2011. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conversion and Management 52 (2):1479–92. doi:10.1016/j.enconman.2010.10.011.
  • Bankovic-Ilic, I., O. Stamenković, and V. Veljković. 2012. Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews 16:3621–47. doi:10.1016/j.rser.2012.03.002.
  • Baral, N. R., P. Neupane, B. B. Ale, C. Quiroz-Arita, S. Manandhar, and T. H. Bradley. 2020. Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renewable and Sustainable Energy Reviews 120:109619. doi:10.1016/j.rser.2019.109619.
  • Beer, T., T. Grant, G. Morgan, J. Lapszewicz, P. Anyon, J. Edwards, P. Nelson, H. Watson, and D. Williams. 2001. Comparison of transport fuels - Life-cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles. http://www.globalbioenergy.org/uploads/media/06_Australian_Greenhouse_Office_-_Comparison_of_Transport_Fuels.pdf
  • Brentin, R. (2014). Soy-based chemicals and materials: growing the value chain. ACS Symposium Series, Dallas, 1178, 1–23. doi:10.1021/bk-2014-1178.ch001
  • Chatterjee, R., V. Sharma, and S. Mukherjee. 2015. The environmental impacts and allocation methods used in LCA studies of vegetable oil-based bio-diesels. Waste and Biomass Valorization 6 (4):579–603. doi:10.1007/s12649-015-9375-2.
  • Chatterjee, R., V. Sharma, S. Mukherjee, and S. Kumar. 2014. Life cycle assessment of bio-diesel production—a comparative analysis. Journal of the Institution of Engineers (India): Series C 95:143–49. doi:10.1007/s40032-014-0105-5.
  • Chen, R., Z. Qin, J. Han, M. Wang, F. Taheripour, W. Tyner, D. O’Connor, and J. Duffield. 2018. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts. Bioresource Technology 251:249–58. doi:10.1016/j.biortech.2017.12.031.
  • Colombo, K., L. Ender, M. M. Santos, and A. A. Chivanga Barros. 2019. Production of biodiesel from soybean oil and methanol, catalyzed by calcium oxide in a recycle reactor. South African Journal of Chemical Engineering 28:19–25. doi:10.1016/j.sajce.2019.02.001.
  • Cvetković, S., I. Cvetković, N. A. Kojcin, B. D. Trzin, B. I. Bankovic-Ilic, S. O. Stamenković, and B. V. Veljkovic (2016). Side-stream products of edible oil refining as feedstocks in biodiesel production.
  • Dahman, Y., K. Syed, S. Begum, P. Roy, and B. Mohtasebi. 2019. Biofuels: Their characteristics and analysis. In Biomass, biopolymer-based materials, and bioenergy, 277–325. New Delhi, India: Woodhead Publishing.
  • Dalgaard, R., J. Schmidt, N. Halberg, P. Christensen, M. Thrane, and W. Pengue. 2008. LCA of soybean meal. The International Journal of Life Cycle Assessment 13:240–54. doi:10.1065/lca2007.06.342.
  • Dash, S. K., S. Dash, and P. Lingfa. 2017. Comparative assessment of performance and emission analysis of a diesel engine fueled with biodiesel prepared from different sources. Journal of Industrial Pollution Control 33 (2):1114–19. https://www.icontrolpollution.com/articles/comparative-assessment-of-performance-and-emissionanalysis-of-a-diesel-engine-fueled-with-biodiesel-preparedfrom-different-sources-.pdf.
  • Datta, A., A. Hossain, and S. Roy. 2019. An overview on biofuels and their advantages and disadvantages. Asian Journal of Chemistry 31. doi:10.14233/ajchem.2019.22098.
  • Degfie, T. A., T. T. Mamo, and Y. S. Mekonnen. 2019. Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Scientific Reports 9 (1):18982. doi:10.1038/s41598-019-55403-4.
  • Deshmukh, S., R. Kumar, and K. Bala. 2019. Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technology 191:232–47. doi:10.1016/j.fuproc.2019.03.013.
  • El Shenawy, E. A., M. Elkelawy, H. Alm-Eldin Bastawissi, M. Taha, H. Panchal, K. Kumar Sadasivuni, and N. Thakar. 2020. Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor. Renewable Energy 148:807–15.
  • Elkelawy, M., H. Alm-Eldin Bastawissi, K. Khodary Esmaeil, A. Mohamed Radwan, H. Panchal, K. Kumar Sadasivuni, D. Ponnamma, and R. Walvekar. 2019. Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 255:115791.
  • Elkelawy, M., H. Alm-Eldin Bastawissi, K. Khodary Esmaeil, A. Mohamed Radwan, H. Panchal, K. Kumar Sadasivuni, M. Suresh, and M. Israr. 2020. Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel 266:117072.
  • Elkelawy, M., H. A. Eldin Bastawissi, E. A. El Shenawy, M. Taha, H. Panchal, and K. Kumar Sadasivuni. 2021. Study of performance, combustion, and emissions parameters of DI-diesel engine fueled with algae biodiesel/diesel/n-pentane blends. Energy Conversion and Management: X 10:100058.
  • Firoz, S. 2017. A review: advantages and disadvantages of biodiesel.
  • Gandidi, I., A. Wiyono, E. Berman, and N. Pambudi. 2019. Experimental upgrading of liquid crude oil obtained from Calophyllum inophyllum by two-stage pyrolysis. Case Studies in Thermal Engineering 16:100544. doi:10.1016/j.csite.2019.100544.
  • Gnansounou, E., and J. Kenthorai Raman. 2016. Life cycle assessment of algae biodiesel and its co-products. Applied Energy 161:300–08. doi:10.1016/j.apenergy.2015.10.043.
  • Goodrum, J. 2002. Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass & Bioenergy 22:205–11. doi:10.1016/S0961-9534(01)00074-5.
  • Gui, M. M., K. T. Lee, and S. Bhatia. 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33 (11):1646–53. doi:10.1016/j.energy.2008.06.002.
  • Gupta, D., and S. Gaur. 2019. Carbon and biofuel footprinting of global production of biofuels. In Biomass, biopolymer-based materials, and bioenergy, 449–81. New Delhi, India: Woodhead Publishing.
  • Hou, J., P. Zhang, X. Yuan, and Y. Zheng. 2011. Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renewable and Sustainable Energy Reviews 15 (9):5081–91. doi:10.1016/j.rser.2011.07.048.
  • Hu, Z., P. Tan, X. Yan, and D. Lou. 2008. Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China. Energy 33:1654–58. doi:10.1016/j.energy.2008.06.004.
  • Huo, H., M. Wang, C. Bloyd, and V. Putsche. 2009. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environmental Science & Technology 43 (3):750–56. doi:10.1021/es8011436.
  • International Energy Agency, I. 2021. India energy outlook 2021. https://iea.blob.core.windows.net/assets/1de6d91e-e23f-4e02-b1fb-51fdd6283b22/India_Energy_Outlook_2021.pdf
  • Jain, M., U. Chandrakant, V. Orsat, and V. Raghavan. 2018. A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Industrial Crops and Products 114:28–44. doi:10.1016/j.indcrop.2018.01.051.
  • Janulis, P. 2004. Reduction of energy consumption in biodiesel fuel life cycle. Renewable Energy 29 (6):861–71. doi:10.1016/j.renene.2003.10.
  • Johnson, M. B., and Z. Wen. 2010. Development of an attached microalgal growth system for biofuel production. Applied Microbiology and Biotechnology 85 (3):525–34. doi:10.1007/s00253-009-2133-2.
  • Khatiwada, D., B. Venkata, S. Silveira, and F. Johnson. 2016. Energy and GHG balances of ethanol production from cane molasses in Indonesia. Applied Energy 164:756–68. doi:10.1016/j.apenergy.2015.11.032.
  • Kim, S., and B. E. Dale. 2003. Cumulative energy and global warming impact from the production of biomass for biobased products. Journal of Industrial Ecology 7 (3–4):147–62. doi:10.1162/108819803323059442.
  • Kim, S., and B. E. Dale. 2005. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass & Bioenergy 29 (6):426–39. doi:10.1016/J.BIOMBIOE.2005.06.004.
  • Kumar, S., A. Chaube, and S. K. Jain. 2012. Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: A review. Renewable and Sustainable Energy Reviews 16 (2):1089–98. https://econpapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:2:p:1089-1098.
  • Kumar, M., and M. P. Sharma. 2016. Selection of potential oils for biodiesel production. Renewable and Sustainable Energy Reviews (56):1129–38. doi:10.1016/j.rser.2015.12.032.
  • Kumar, A., J. Vachan Tirkey, and S. Kumar Shukla. 2021. Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India. Renewable Energy 169 (C):266–82. doi:10.1016/j.renene.2020.12.
  • Landis, A. E., S. A. Miller, and T. L. Theis. 2007. Life cycle of the corn−soybean agroecosystem for biobased production. Environmental Science & Technology 41 (4):1457–64. doi:10.1021/es0606125.
  • Leksono, B., E. Windyarini, T. Hasnah, S. Rahman, and H. Baral (2018). Calophyllum inophyllum for green energy and landscape restoration: plant growth, biofuel content, associate waste utilization and agroforestry prospect. 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Thailand, 1–7. doi:10.23919/ICUE-GESD.2018.8635740
  • Leung, D. Y. C., X. Wu, and M. K. H. Leung. 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87 (4):1083–95. doi:10.1016/j.apenergy.2009.10.006.
  • Lin, C.-H., Y.-T. Chang, M.-C. Lai, T.-Y. Chiou, and C.-S. Liao. 2021. Continuous biodiesel production from waste soybean oil using a nano-Fe3O4 microwave catalysis. Processes 9 (5). doi: 10.3390/pr9050756.
  • Maceiras, R., M. Cancela, S. Urrejola, and A. Sanchez Bermudez. 2011. Macroalgae: raw material for biodiesel production. Applied Energy 88:3318–23. doi:10.1016/j.apenergy.2010.11.027.
  • Marinković, D. M., M. V. Stanković, A. V. Veličković, J. M. Avramović, M. R. Miladinović, O. O. Stamenković, V. B. Veljković, and D. M. Jovanović. 2016. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews 56:1387–408. doi:10.1016/j.rser.2015.12.007.
  • Martín, L. A., C. A. Popovich, M. C. Damiani, and P. I. Leonardi. 2020. A practical tool for selecting microalgal species for biodiesel production. Journal of Renewable and Sustainable Energy 12 (6):63101. doi:10.1063/5.0010668.
  • Mbothu, J., U. Mutwiwa, B. Eshton, and L. Abubakar. 2019. Lifecycle greenhouse gas emissions and energy balances of sugarcane molasses-based bioethanol in Kenya. JAGST 19 (1). http://ir.jkuat.ac.ke/bitstream/handle/123456789/5725/document%2830%29.pdf?sequence=1&isAllowed=y.
  • Milazzo, M., F. Spina, P. Primerano, and J. Bart. 2013. Soy biodiesel pathways: Global prospects. Renewable and Sustainable Energy Reviews 26:579–624.
  • Mitter, E. K., J. J. Germida, and J. R. de Freitas. 2021. Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Scientific Reports 11 (1):10856. doi:10.1038/s41598-021-89637-y.
  • Mostafa, S. S. M., and N. S. El-Gendy. 2017. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian Journal of Chemistry 10:S2040–S2050. doi:10.1016/j.arabjc.2013.07.034.
  • Myint, L., and M. El-Halwagi. 2008. Process analysis and optimization of biodiesel production from soybean oil. Clean Technologies and Environmental Policy 11:263–76. doi:10.1007/s10098-008-0156-5.
  • Nanda, S., R. Rana, P. K. Sarangi, A. K. Dalai, and J. A. Kozinski. 2018. A broad introduction to first-, second-, and third-generation biofuels BT - recent advancements in biofuels and bioenergy utilization. In Recent advancements in Biofuels and Bioenergy Utilization, edited by P. K. Sarangi, S. Nanda, and P. Mohanty, 1–25. Singapore: Springer. doi:10.1007/978-981-13-1307-3_1.
  • Nazari, M. T., J. Mazutti, L. G. Basso, L. M. Colla, and L. Brandli. 2021. Biofuels and their connections with the sustainable development goals: A bibliometric and systematic review. Environment, Development and Sustainability 23 (8):11139–56. doi:10.1007/s10668-020-01110-4.
  • Nisar, J., R. Razaq, M. Farooq, R. Khan, M. Sayed, A. Shah, and I. Rahman. 2017. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy 101:111.
  • Ntihuga, J. N., T. Senn, P. Gschwind, and R. Kohlus. 2013. Estimating energy- and eco-balances for continuous bio-ethanol production using a blenke cascade system. Energies 6 (4). doi: 10.3390/en6042065.
  • Ong, H. C., T. M. I. Mahlia, H. H. Masjuki, and N. Rahmad. 2011. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renewable & Sustainable Energy Reviews 15:3501–15. doi:10.1016/j.rser.2011.05.005.
  • Ou, X., X. Zhang, S. Chang, and Q. Guo. 2009. Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Applied Energy 86 (Supplemen):197–208.
  • Panichelli, L., A. Dauriat, and E. Gnansounou. 2009. Life cycle assessment of soybean-based biodiesel in argentina for export. The International Journal of Life Cycle Assessment 14:144–59. doi:10.1007/s11367-008-0050-8.
  • Petroleum Planning & Analysis Cell, M. of P. & N. G. (2020). LPG PROFILE (data on LPG marketing).
  • Pikula, K., A. Zakharenko, A. Stratidakis, M. Razgonova, A. Nosyrev, Y. Mezhuev, A. Tsatsakis, and K. Golokhvast. 2020. The advances and limitations in biodiesel production: Feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chemistry Letters and Reviews 13 (4):275–94. doi:10.1080/17518253.2020.1829099.
  • Portugal Pereira, J., J. Nakatani, K. Kurisu, and K. Hanaki. 2015. Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas. Energy 83. doi:10.1016/j.energy.2015.02.022.
  • Pradhan, A., D. S. Shrestha, A. McAloon, W. Yee, M. Haas, and A. J. Duffield. 2011. Energy life-cycle assessment of soybean biodiesel revisited. Transactions of the ASABE 54 (3):1031–39. doi:10.13031/2013.37088.
  • Pradhan, A., D. S. Shrestha, A. McAloon, W. Yee, M. Haas, J. A. Duffield, and H. Shapouri. 2009. Energy life-cycle assessment of soybean biodiesel. https://www.nescaum.org/documents/stakeholder-comments-on-the-low-carbon-fuels-standard/comments-from-national-biodiesel-board/energybalancefinalsept09.pdf/
  • Pragya, N., and K. K. Pandey. 2016. Life cycle assessment of green diesel production from microalgae. Renewable Energy 86 (C):623–32. doi:10.1016/j.renene.2015.08.
  • Pragya, N., N. Sharma, and B. Gowda. 2017. Biofuel from oil-rich tree seeds: Net energy ratio, emissions saving and other environmental impacts associated with agroforestry practices in Hassan district of Karnataka, India. Journal of Cleaner Production 164:905–17. doi:10.1016/j.jclepro.2017.07.005.
  • Qi, D. H., and C. F. Lee. 2014. Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. Journal of the Taiwan Institute of Chemical Engineers 45:504–07. doi:10.1016/j.jtice.2013.06.021.
  • Regan, D. L., and G. Gartside. 1983. Liquid fuels from micro-algae in australia. Australia: CSIRO. https://books.google.co.in/books?id=ACoRPQAACAAJ
  • Renita, A. A., D. J. Amarnath, A. Padhmanabhan, B. Dhamodaran, and J. Kizhakudan (2010). Production of bio-diesel from marine macro algae. Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010), Chennai, India, 430–32. doi:10.1109/RSTSCC.2010.5712882
  • Rizwanul Fattah, I. M., H. C. Ong, T. M. I. Mahlia, M. Mofijur, A. S. Silitonga, S. M. A. Rahman, and A. Ahmad. 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research 8:101. doi:10.3389/fenrg.2020.00101.
  • Sankpal, S., and P. Naikwade. 2013. Important bio-fuel crops: Advantages and disadvantages. International Journal of Scientific and Engineering Research 4:1–5.
  • Santoso, A., S. D. Sumari, and R. M. Sari. 2018. Optimization of synthesis of biodiesel from jatropha curcas L. with heterogeneous catalyst of CaO and MgO by transesterification reaction using microwave. Journal of Physics. Conference Series 1093:12047. doi:10.1088/1742-6596/1093/1/012047.
  • Saranya, G., and T. V. Ramachandra. 2020. Life cycle assessment of biodiesel from estuarine microalgae. Energy Conversion and Management: X 8:100065. doi:10.1016/j.ecmx.2020.100065.
  • Schlagermann, P., G. Göttlicher, R. Dillschneider, R. Rosello-Sastre, and C. Posten. 2012. Composition of algal oil and its potential as biofuel. Journal of Combustion 2012:285185. doi:10.1155/2012/285185.
  • Silitonga, A. S., H. H. Masjuki, H. C. Ong, F. Kusumo, T. M. I. Mahlia, and A. H. Bahar. 2016. Pilot-scale production and the physicochemical properties of palm and Calophyllum inophyllum biodiesels and their blends. Journal of Cleaner Production 126:654–66.
  • Singh, A., A. K. Choudhary, S. Sinha, H. Panchal, and K. K. Sadasivuni. 2022. Analysis of vibrations in a diesel engine produced by Jatropha biodiesel using heterogeneous catalyst. Energy & Environment (January). doi:10.1177/0958305X211063935.
  • Singh, A., S. Sinha, A. Kumar Choudhary, H. Panchal, M. Elkelawy, and K. Kumar Sadasivuni. 2020. Optimization of performance and emission characteristics of CI engine fueled with Jatropha biodiesel produced using a heterogeneous catalyst (CaO). Fuel 280:118611.
  • Singh, A., S. Sinha, A. Kumar Choudhary, D. Sharma, H. Panchal, and K. Kumar Sadasivuni. 2021. An experimental investigation of emission performance of heterogenous catalyst jatropha biodiesel using RSM. Case Studies in Thermal Engineering 25:100876.
  • Tran, D.-T., K.-L. Yeh, C.-L. Chen, and J.-S. Chang. 2012. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology 108:119–27. doi:10.1016/j.biortech.2011.12.145.
  • Vadery, V., B. N. Narayanan, R. M. Ramakrishnan, S. K. Cherikkallinmel, S. Sugunan, D. P. Narayanan, and S. Sasidharan. 2014. Room temperature production of jatropha biodiesel over coconut husk ash. Energy 70:588–94. doi:10.1016/j.energy.2014.04.045.
  • Velasquez-Orta, S. B., J. G. M. Lee, and A. Harvey. 2012. Alkaline in situ transesterification of Chlorella vulgaris. Fuel 94:544–50. doi:10.1016/j.fuel.2011.11.045.
  • Veljković, V. B., I. B. Banković-Ilić, and O. S. Stamenković. 2015. Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renewable and Sustainable Energy Reviews 49 (C):500–16. doi:10.1016/j.rser.2015.04.09.
  • World meteorological organization. 2021. WMO GREENHOUSE GAS BULLETIN. https://library.wmo.int/doc_num.php?explnum_id=10904
  • Yang, R., X. Du, X. Zhang, H. Xin, K. Zhou, D. Li, and C. Hu. 2019. Transformation of jatropha oil into high-quality biofuel over Ni–W bimetallic catalysts. ACS Omega 4 (6):10580–92. doi:10.1021/acsomega.9b00375.
  • Yong, L. 2006. Cultivation techniques and utilization value in Jatrohpa curcas L. Sofia: Nonwood Forest Research.
  • Zah, R., H. Boeni, M. Gauch, R. Hischier, M. Lehmann, and P. Waeger (2007). Life cycle assessment of energy products: Environmental impact assessment of biofuels.
  • Zeng, D., S. Liu, W. Gong, H. Chen, and G. Wang. 2014. A nano-sized solid acid synthesized from rice hull ash for biodiesel production. RSC Advances 4 (39):20535–39. doi:10.1039/C4RA00266K.
  • Živković, S. B., M. V. Veljković, I. B. Banković-Ilić, I. M. Krstić, S. S. Konstantinović, S. B. Ilić, J. M. Avramović, O. S. Stamenković, and V. B. Veljković. 2017. Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews 79:222–47. doi:10.1016/j.rser.2017.05.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.