1,341
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent advancement on thermal management strategies in PEM fuel cell stack: a technical assessment from the context of fuel cell electric vehicle application

ORCID Icon, &
Pages 3100-3125 | Received 28 Oct 2021, Accepted 21 Feb 2022, Published online: 20 Apr 2022

References

  • Afshari, E., M. Ziaei-Rad, and M. M. Dehkordi. 2017. Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells. Journal of the Energy Institute 90 (5):752–63. doi:10.1016/j.joei.2016.07.002.
  • Akbari, M., A. Tamayol, and M. Bahrami. 2012. Thermal assessment of convective heat transfer in air- cooled pemfc stacks: An experimental study. Energy Procedia 29:1–11. doi:10.1016/j.egypro.2012.09.002.
  • Al-Tememy, M. G. H., and Y. Devrim. 2021. Development of effective bimetallic catalyst for high-temperature PEM fuel cell to improve CO tolerance. International Journal of Energy Research 45 (2):3343–57. doi:10.1002/er.6032.
  • Andersen, S. M. 2016. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures. Applied Catalysis. B, Environmental 181:146–55. doi:10.1016/j.apcatb.2015.07.049.
  • Askaripour, H. 2019. Effect of operating conditions on the performance of a PEM fuel cell. International Journal of Heat and Mass Transfer 144:118705. doi:10.1016/j.ijheatmasstransfer.2019.118705.
  • Bahru, R., N. Shaari, and M. A. Mohamed. 2020. Allotrope carbon materials in thermal interface materials and fuel cell applications: A review. International Journal of Energy Research 44 (4):2471–98. doi:10.1002/er.5077.
  • Bali Swain, R., and F. Yang-Wallentin. 2020. Achieving sustainable development goals: Predicaments and strategies. International Journal of Sustainable Development & World Ecology 27 (2):96–106. doi:10.1080/13504509.2019.1692316.
  • Bargal, M. H. S., M. A. A. Abdelkareem, Q. Tao, J. Li, J. Shi, and Y. Wang. 2020. Liquid cooling techniques in proton exchange membrane fuel cell stacks: A detailed survey. Alexandria Engineering Journal 59 (2):635–55. doi:10.1016/j.aej.2020.02.005.
  • Bargal, M. H. S., M. M. Souby, M. A. A. Abdelkareem, M. Sayed, Q. Tao, M. Chen, and Y. Wang. 2021. Experimental investigation of the thermal performance of a radiator using various nanofluids for automotive PEMFC applications. International Journal of Energy Research 45 (5):6831–49. doi:10.1002/er.6274.
  • Baroutaji, A., A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, M. A. Abdelkareem, and A.-G. Olabi. 2021. Advancements and prospects of thermal management and waste heat recovery of PEMFC. International Journal of Thermofluids 9:100064. doi:10.1016/j.ijft.2021.100064.
  • Bose, A., P. Babburi, R. Kumar, D. Myers, J. Mawdsley, and J. Milhuff. 2013. Performance of individual cells in polymer electrolyte membrane fuel cell stack under-load cycling conditions. Journal of Power Sources 243:964–72. doi:10.1016/j.jpowsour.2013.05.156.
  • Budak, Y., and Y. Devrim. 2018. Investigation of micro-combined heat and power application of PEM fuel cell systems. Energy Conversion and Management 160:486–94. doi:10.1016/j.enconman.2018.01.077.
  • Cao, Y., Y. Li, G. Zhang, K. Jermsittiparsert, and M. Nasseri. 2020. An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Reports 6:530–42. doi:10.1016/j.egyr.2020.02.035.
  • Chaisubanan, N., W. Maniwan, and M. Hunsom. 2017. Effect of heat-treatment on the performance of PtM/C (M = Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell. Energy 127:454–61. doi:10.1016/j.energy.2017.03.162.
  • Chen, C.-Y., and K.-P. Huang. 2017. Performance and transient behavior of the kW-grade PEMFC stack with the PtRu catalyst under CO-contained diluted hydrogen. International Journal of Hydrogen Energy 42 (34):22250–58. doi:10.1016/j.ijhydene.2017.06.037.
  • Chen, Q., Z. Niu, H. Li, K. Jiao, and Y. Wang. 2021a. Recent progress of gas diffusion layer in proton exchange membrane fuel cell: Two-phase flow and material properties. International Journal of Hydrogen Energy 46 (12):8640–71. doi:10.1016/j.ijhydene.2020.12.076.
  • Chen, S., X. Wang, W. Li, S. Wang, Y. Qi, X. Li, Y. Zhao, T. Zhu, T. Ma, and X. Xie. 2017. Experimental study on cooling performance of microencapsulated phase change suspension in a PEMFC. International Journal of Hydrogen Energy 42 (50):30004–12. doi:10.1016/j.ijhydene.2017.08.190.
  • Chen, S., S. Wang, X. Wang, W. Li, B. Liang, T. Zhu, and X. Xie. 2021b. Microencapsulated phase change material suspension for cold start of pEMFC. Materials 14 (6):1514. doi:10.3390/ma14061514.
  • Chen, X., J. Xu, Y. Fang, W. Li, Y. Ding, Z. Wan, X. Wang, and Z. Tu. 2022. Temperature and humidity management of PEM fuel cell power system using multi-input and multi-output fuzzy method. Applied Thermal Engineering 203:117865. doi:10.1016/j.applthermaleng.2021.117865.
  • Chen, H., X. Zhao, T. Zhang, and P. Pei. 2019. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Conversion and Management 182:282–98. doi:10.1016/j.enconman.2018.12.049.
  • Choi, E. J., J. Y. Park, and M. S. Kim. 2019. Two-phase cooling using HFE-7100 for polymer electrolyte membrane fuel cell application. Applied Thermal Engineering 148:868–77. doi:10.1016/j.applthermaleng.2018.11.103.
  • Clement, J., and X. Wang. 2013. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Applied Thermal Engineering 50 (1):268–74. doi:10.1016/j.applthermaleng.2012.06.017.
  • Cullen, J. M., and J. M. Allwood. 2010. Theoretical efficiency limits for energy conversion devices. Energy 35 (5):2059–69. doi:10.1016/j.energy.2010.01.024.
  • da Fonseca, R., E. Bideaux, M. Gerard, B. Jeanneret, M. Desbois-Renaudin, and A. Sari. 2014. Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model. Applied Energy 113:219–29. doi:10.1016/j.apenergy.2013.07.043.
  • De Las Heras, A., F. J. Vivas, F. Segura, M. J. Redondo, and J. M. Andújar. 2018. Air-cooled fuel cells: Keys to design and build the oxidant/cooling system. Renewable Energy 125:1–20. doi:10.1016/j.renene.2018.02.077.
  • Do, H.-Y., C.-H. Kim, J.-Y. Han, H.-S. Kim, and S.-K. Ryi. 2021. Low-temperature proton-exchange membrane fuel cell-grade hydrogen production by membrane reformer equipped with Pd-composite membrane and methanation catalyst on permeation stream. Journal of Membrane Science 634:119373. doi:10.1016/j.memsci.2021.119373.
  • Edwards, R. L., and A. Demuren. 2016. Regression analysis of PEM fuel cell transient response. International Journal of Energy and Environmental Engineering 7 (3):329–41. doi:10.1007/s40095-016-0209-1.
  • Falcone, P. M., M. Hiete, and A. Sapio. 2021. Hydrogen economy and sustainable development goals: Review and policy insights. Current Opinion in Green and Sustainable Chemistry 31:100506. doi:10.1016/j.cogsc.2021.100506.
  • Faydi, Y., R. Lachat, and Y. Meyer. 2016. Thermomechanical characterisation of commercial gas diffusion layers of a proton exchange membrane fuel cell for high compressive pre-loads under dynamic excitation. Fuel 182:124–30. doi:10.1016/j.fuel.2016.05.074.
  • Fly, A., and R. H. Thring. 2016. A comparison of evaporative and liquid cooling methods for fuel cell vehicles. International Journal of Hydrogen Energy 41 (32):14217–29. doi:10.1016/j.ijhydene.2016.06.089.
  • Garraín, D., and Y. Lechón. 2014. Exploratory environmental impact assessment of the manufacturing and disposal stages of a new PEM fuel cell. International Journal of Hydrogen Energy 39 (4):1769–74. doi:10.1016/j.ijhydene.2013.11.095.
  • Gong, C., J. Shen, Y. Yu, K. Wang, and Z. Tu. 2020. Heat dissipation characteristic in the intake grille and radiator of a fuel cell vehicle. International Journal of Green Energy 17 (10):591–601. doi:10.1080/15435075.2020.1779078.
  • Guerrero Moreno, N., M. Cisneros Molina, D. Gervasio, and J. F. Pérez Robles. 2015. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renewable and Sustainable Energy Reviews 52:897–906. doi:10.1016/j.rser.2015.07.157.
  • Gwak, G., and H. Ju. 2015. A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperatures based on control of the operating current density. International Journal of Hydrogen Energy 40 (35):11989–97. doi:10.1016/j.ijhydene.2015.05.179.
  • Hasanpour, S., M. Ahadi, M. Bahrami, N. Djilali, and M. Akbari. 2018. Woven gas diffusion layers for polymer electrolyte membrane fuel cells: Liquid water transport and conductivity trade-offs. Journal of Power Sources 403:192–98. doi:10.1016/j.jpowsour.2018.09.076.
  • Haseli, Y. 2018. Maximum conversion efficiency of hydrogen fuel cells. International Journal of Hydrogen Energy 43 (18):9015–21. doi:10.1016/j.ijhydene.2018.03.076.
  • Honda global | clarity fuel cell - picture book [online], 2022. Clarity Fuel Cell. Available from: https://global.honda/innovation/FuelCell/Clarity-Fuel-Cell-picturebook.html [Accessed 4 January 2022].
  • Hong, B. K., and S. H. Kim. 2018. (Invited) recent advances in fuel cell electric vehicle technologies of Hyundai. ECS Transactions 86 (13):3. doi:10.1149/08613.0003ecst.
  • Huang, B., Q. Jian, L. Luo, and X. Bai. 2020. Research on the in-plane temperature distribution in a PEMFC stack integrated with flat-plate heat pipe under different startup strategies and inclination angles. Applied Thermal Engineering 179:115741. doi:10.1016/j.applthermaleng.2020.115741.
  • Huang, Z., Q. Jian, L. Luo, B. Huang, X. Bai, and D. Li. 2021. Rapid thermal response and sensitivity analysis of proton exchange membrane fuel cell stack with ultra-thin vapor chambers. Applied Thermal Engineering 199:117526. doi:10.1016/j.applthermaleng.2021.117526.
  • Huang, Y., Q. Ouyang, Q. Guo, X. Guo, G. Zhang, and D. Zhang. 2016. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Materials & Design 90:508–15. doi:10.1016/j.matdes.2015.10.146.
  • Hwang, S. H., and M. S. Kim. 2016. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities. Applied Thermal Engineering 99:635–44. doi:10.1016/j.applthermaleng.2016.01.091.
  • Ijaodola, O. S., Z. El- Hassan, E. Ogungbemi, F. N. Khatib, T. Wilberforce, J. Thompson, and A. G. Olabi. 2019. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 179:246–67. doi:10.1016/j.energy.2019.04.074.
  • İnci, M., M. Büyük, M. H. Demir, and G. İlbey. 2021. A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renewable and Sustainable Energy Reviews 137:110648. doi:10.1016/j.rser.2020.110648.
  • Islam, R., B. Shabani, J. Andrews, and G. Rosengarten. 2017. Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell. International Journal of Hydrogen Energy 42 (30):19272–86. doi:10.1016/j.ijhydene.2017.06.087.
  • Islam, M. R., B. Shabani, and G. Rosengarten. 2016. Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach. Applied Energy 178:660–71. doi:10.1016/j.apenergy.2016.06.090.
  • J, A. K., K. P, and S. R. 2008. Studies on PEM fuel cells using various alcohols for low power applications. International Journal of ELECTROCHEMICAL SCIENCE 3:961–69.
  • Jayakumar, A., 2018. An assessment on additive manufacturing technique to fabricate integral pem fuel cell/electrolyser component. MATEC Web of Conferences, Chennai, 172, 04005. doi:10.1051/matecconf/201817204005.
  • Jayakumar, A., D. K. Madheswaran, and N. M. Kumar. 2021. A critical assessment on functional attributes and degradation mechanism of membrane electrode assembly components in direct methanol fuel cells. Sustainability 13 (24):13938. doi:10.3390/su132413938.
  • Jayakumar, A., S. P. Sethu, M. Ramos, J. Robertson, and A. Al-Jumaily. 2015. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21 (1):1–18. doi:10.1007/s11581-014-1322-x.
  • Ji, C., H. Niu, S. Wang, C. Liang, X. Li, and J. Yang. 2019. Research on two-phase flow considering hydrogen crossover in the membrane for a polymer electrolyte membrane fuel cell. International Journal of Energy Research 43 (7):2881–96. doi:10.1002/er.4430.
  • Kandlikar, S. G., and Z. Lu. 2009. Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions. Journal of Fuel Cell Science and Technology 6 (4). doi:10.1115/1.3008043.
  • Kannan, A., A. Kabza, and J. Scholta. 2015. Long term testing of start–stop cycles on high temperature PEM fuel cell stack. Journal of Power Sources 277:312–16. doi:10.1016/j.jpowsour.2014.11.115.
  • Karimi, M. B., F. Mohammadi, and K. Hooshyari. 2020. Potential use of deep eutectic solvents (DESs) to enhance anhydrous proton conductivity of Nafion 115® membrane for fuel cell applications. Journal of Membrane Science 611:118217. doi:10.1016/j.memsci.2020.118217.
  • Kerkoub, Y., A. Benzaoui, F. Haddad, and Y. K. Ziari. 2018. Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Conversion and Management 174:260–75. doi:10.1016/j.enconman.2018.08.041.
  • Kim, G., K. Eom, M. Kim, S. J. Yoo, J. H. Jang, H.-J. Kim, and E. Cho. 2015. Design of an advanced membrane electrode assembly employing a double-layered cathode for a pem fuel cell. ACS Applied Materials & Interfaces 7 (50):27581–85. doi:10.1021/acsami.5b07346.
  • Knorr, F., D. G. Sanchez, J. Schirmer, P. Gazdzicki, and K. A. Friedrich. 2019. Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells. Applied Energy 238:1–10. doi:10.1016/j.apenergy.2019.01.036.
  • Ko, J., and H. Ju. 2013. Effects of cathode catalyst layer design parameters on cold start behavior of polymer electrolyte fuel cells (PEFCs). International Journal of Hydrogen Energy 38 (1):682–91. doi:10.1016/j.ijhydene.2012.05.154.
  • Kong, I. M., J. W. Choi, S. I. Kim, E. S. Lee, and M. S. Kim. 2015. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer. Applied Energy 145:345–53. doi:10.1016/j.apenergy.2015.02.027.
  • Kordi, M., A. J. Moghadam, and E. Afshari. 2019. Effects of cooling passages and nanofluid coolant on thermal performance of polymer electrolyte membrane fuel cells. Journal of Electrochemical Energy Conversion and Storage 16 (3). doi:10.1115/1.4042254.
  • Krerkkiat, S., and C. Wei-Chin. 2021. Thermal management of high-temperature polymer electrolyte membrane fuel cells by using flattened heat pipes. Thermal Science 25 (4 Part A):2411–23. doi:10.2298/TSCI190324135S.
  • Kunkel, R., N. Baumann, T. Jurzinsky, and C. Cremers. 2020. PEM-Fuel cell catalyst behavior between room temperature and freezing point. Fuel Cells 20 (3):236–44. doi:10.1002/fuce.201900067.
  • Kusoglu, A., and A. Z. Weber. 2017. New insights into perfluorinated sulfonic-acid ionomers. Chemical Reviews 117 (3):987–1104. doi:10.1021/acs.chemrev.6b00159.
  • Lee, J., M. H. Gundu, N. Lee, K. Lim, S. W. Lee, S. S. Jang, J. Y. Kim, and H. Ju. 2020. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. International Journal of Hydrogen Energy 45 (20):11704–13. doi:10.1016/j.ijhydene.2019.07.128.
  • Lee, J., H. Liu, M. G. George, R. Banerjee, N. Ge, S. Chevalier, T. Kotaka, Y. Tabuchi, and A. Bazylak. 2019. Microporous layer to carbon fibre substrate interface impact on polymer electrolyte membrane fuel cell performance. Journal of Power Sources 422:113–21. doi:10.1016/j.jpowsour.2019.02.099.
  • Lee, N., H. Salihi, B. Yoo, J. Lee, S. W. Lee, S. S. Jang, and H. Ju. 2021. Metal-foam-based cathode flow-field design to improve H2O retention capability of passive air cooled polymer electrolyte fuel cells. International Journal of Thermal Sciences 161:106702. doi:10.1016/j.ijthermalsci.2020.106702.
  • Li, W., J. Jiang, H. An, S. Dong, Z. Yue, H. Qian, and H. Yang. 2021b. Self-cross-linked sulfonated poly(ether ether ketone) with pendant sulfoalkoxy groups for proton exchange membrane fuel cells. ACS Applied Energy Materials 4 (3):2732–40. doi:10.1021/acsaem.1c00022.
  • Li, C. J., Y. Liu, and Z. S. Ma. 2018. Thermodynamic analysis of the performance of an irreversible PEMFC. Defect and Diffusion Forum 388:350–60. www.scientific.net
  • Li, Q., Z. Liu, Y. Sun, S. Yang, and C. Deng. 2021a. A review on temperature control of proton exchange membrane fuel cells. Processes 9 (2):235. doi:10.3390/pr9020235.
  • Li, C., Y. Liu, B. Xu, and Z. Ma. 2019. Finite time thermodynamic optimization of an irreversible proton exchange membrane fuel cell for vehicle use. Processes 7 (7):419. doi:10.3390/pr7070419.
  • Li, S., and B. Sundén. 2018. Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells. Numerical Heat Transfer, Part A: Applications 74 (1):917–30. doi:10.1080/10407782.2018.1486642.
  • Liang, J., and Z. Wu. 2015. Simulation and optimization of air-cooled pemfc stack for lightweight hybrid vehicle application. 2015. Mathematical Problems in Engineering 2015:e738207. doi:10.1155/2015/738207.
  • Liao, N., Y. Li, S. Jin, G. Liu, Q. Wan, S. Sang, and D. Su. 2017. Effects of catalysts state on the synthesis of MWCNTs modified expanded graphite through microwave-assisted pyrolysis of ethanol. Journal of Materials Science 52 (19):11442–52. doi:10.1007/s10853-017-1333-x.
  • Lin, R., H. Wang, and Y. Zhu. 2021. Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density. Energy 221:119909. doi:10.1016/j.energy.2021.119909.
  • Liu, J. X., H. Guo, F. Ye, D. C. Qiu, and C. F. Ma. 2015. INTERFACIAL PHENOMENA AND HEAT TRANSFER IN PROTON EXCHANGE MEMBRANE FUEL CELLS. Interfacial Phenomena and Heat Transfer 3 (3):259–301. doi:10.1615/InterfacPhenomHeatTransfer.2016014779.
  • Liu, J., L. Lai, N. G. Sahoo, W. Zhou, Z. Shen, S. H. Chan, J. Liu, L. Lai, N. G. Sahoo, W. Zhou, et al. 2012. Carbon nanotube-based materials for fuel cell applications. Australian Journal of Chemistry 65 (9):1213–22. doi:10.1071/CH12128.
  • Liu, C., G. Liu, Y. Qin, and Y. Zhuang. 2021. Analysis of a combined proton exchange membrane fuel cell and organic Rankine cycle system for waste heat recovery. International Journal of Green Energy 18 (3):271–81. doi:10.1080/15435075.2020.1854268.
  • Luo, L., B. Huang, X. Bai, Z. Cheng, and Q. Jian. 2020. Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers. Applied Energy 270:115192. doi:10.1016/j.apenergy.2020.115192.
  • Madheswaran, D. K., and A. Jayakumar. 2021. Recent advancements on non-platinum based catalyst electrode material for polymer electrolyte membrane fuel cells: A mini techno-economic review. Bulletin of Materials Science 44 (4):287. doi:10.1007/s12034-021-02572-6.
  • Maiyalagan, T., and V. S. Saji. 2017. Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends. Singapore: John Wiley & Sons.
  • Mardle, P., I. Cerri, T. Suzuki, and A. El-kharouf. 2021. An examination of the catalyst layer contribution to the disparity between the Nernst potential and open circuit potential in proton exchange membrane fuel cells. Catalysts 11 (8):965. doi:10.3390/catal11080965.
  • Mariani, M., S. Latorrata, S. Patrignani, P. Gallo Stampino, and G. Dotelli. 2020. Characterization of novel graphene-based microporous layers for polymer electrolyte membrane fuel cells operating under low humidity and high temperature. International Journal of Hydrogen Energy 45 (11):7046–58. doi:10.1016/j.ijhydene.2019.12.213.
  • Matian, M., A. Marquis, and N. Brandon. 2011. Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack. International Journal of Hydrogen Energy 36 (10):6051–66. doi:10.1016/j.ijhydene.2011.01.026.
  • Matulić, N., G. Radica, F. Barbir, and S. Nižetić. 2019. Commercial vehicle auxiliary loads powered by PEM fuel cell. International Journal of Hydrogen Energy 44 (20):10082–90. doi:10.1016/j.ijhydene.2018.12.121.
  • Moraveji, M. K., and R. M. Ardehali. 2013. CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2o3/water nanofluid in mini-channel heat sink. International Communications in Heat and Mass Transfer 44:157–64. doi:10.1016/j.icheatmasstransfer.2013.02.012.
  • Naji, A., B. Krause, P. Pötschke, and A. Ameli. 2019. Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications. Polymer Composites 40 (8):3189–98. doi:10.1002/pc.25169.
  • Nguyen, H. Q., and B. Shabani. 2020. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications. Energy Conversion and Management 204:112328. doi:10.1016/j.enconman.2019.112328.
  • Niblett, D., A. Mularczyk, V. Niasar, J. Eller, and S. Holmes. 2020. Two-phase flow dynamics in a gas diffusion layer - gas channel - microporous layer system. Journal of Power Sources 471:228427. doi:10.1016/j.jpowsour.2020.228427.
  • Niu, H., C. Ji, S. Wang, and C. Liang. 2021. Research on PEMFC resistance relaxation characteristics and degradation under thermal cycles with different residual water locations. International Journal of Hydrogen Energy 47: 2662–2672. doi:10.1016/j.ijhydene.2021.10.196.
  • Omrani, R., S. Seif Mohammadi, Y. Mafinejad, B. Paul, R. Islam, and B. Shabani. 2019. PEMFC purging at low operating temperatures: An experimental approach. International Journal of Energy Research 43 (13):7496–507. doi:10.1002/er.4783.
  • Ondrejička, K., V. Ferencey, and M. Stromko. 2019. Modeling of the air-cooled PEM fuel cell. IFAC-PapersOnLine 52 (27):98–105. doi:10.1016/j.ifacol.2019.12.740.
  • Oro, M. V., and E. Bazzo. 2015. Flat heat pipes for potential application in fuel cell cooling. Applied Thermal Engineering 90:848–57. doi:10.1016/j.applthermaleng.2015.07.055.
  • Özgür, T., and A. C. Yakaryilmaz. 2018. Thermodynamic analysis of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy 43 (38):18007–13. doi:10.1016/j.ijhydene.2018.06.152.
  • Pan, W., P. Li, Q. Gan, X. Chen, F. Wang, and G. Dai. 2020. Thermal stability analysis of cold start processes in PEM fuel cells. Applied Energy 261:114430. doi:10.1016/j.apenergy.2019.114430.
  • Pourfayaz, F., M. Imani, M. Mehrpooya, and R. Shirmohammadi. 2019. Process development and exergy analysis of a novel hybrid fuel cell-absorption refrigeration system utilizing nanofluid as the absorbent liquid. International Journal of Refrigeration 97:31–41. doi:10.1016/j.ijrefrig.2018.09.011.
  • Pourmahmoud, N., H. Sadeghifar, and A. Torkavannejad. 2017. A novel, state-of-the-art tubular architecture for polymer electrolyte membrane fuel cells: Performance enhancement, size and cost reduction. International Journal of Heat and Mass Transfer 108:577–84. doi:10.1016/j.ijheatmasstransfer.2016.12.058.
  • Primachenko, O. N., E. A. Marinenko, A. S. Odinokov, S. V. Kononova, Y. V. Kulvelis, and V. T. Lebedev. 2021. State of the art and prospects in the development of proton-conducting perfluorinated membranes with short side chains: A review. Polymers for Advanced Technologies 32 (4):1386–408. doi:10.1002/pat.5191.
  • Qiu, D., H. Janßen, L. Peng, P. Irmscher, X. Lai, and W. Lehnert. 2018. Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression. Applied Energy 231:127–37. doi:10.1016/j.apenergy.2018.09.117.
  • Qiu, D., L. Peng, J. Tang, and X. Lai. 2020. Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels. Energy 198:117334. doi:10.1016/j.energy.2020.117334.
  • Qiu, D., L. Peng, P. Yi, W. Lehnert, and X. Lai. 2021. Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design. Renewable and Sustainable Energy Reviews 152:111660. doi:10.1016/j.rser.2021.111660.
  • Rahgoshay, S. M., A. A. Ranjbar, A. Ramiar, and E. Alizadeh. 2017. Thermal investigation of a PEM fuel cell with cooling flow field. Energy 134:61–73. doi:10.1016/j.energy.2017.05.151.
  • Rajalakshmi, N., and R. Gopalan. 2021. Recent trends in science and technology of hydrogen and polymer electrolyte membrane fuel cells. Transactions of the Indian National Academy of Engineering 6 (2):189–218. doi:10.1007/s41403-021-00206-1.
  • Ravishankar, S., and K. Arul Prakash. 2014. Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks. Applied Thermal Engineering 66 (1–2):239–51. doi:10.1016/j.applthermaleng.2014.01.068.
  • Raźniak, A., M. Dudek, T. Siwek, P. Dudek, and W. Kalawa. 2018. Determination of electrical and efficiency parameters of air cooling of low-temperature PEM fuel cell stack with power of 5kW. Przeglad Elektrotechniczny, R 94(4):140–147. doi:10.15199/48.2018.04.34.
  • Ren, P., P. Pei, Y. Li, Z. Wu, D. Chen, and S. Huang. 2020. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Progress in Energy and Combustion Science 80:100859. doi:10.1016/j.pecs.2020.100859.
  • Rigal, S., C. Turpin, A. Jaafar, T. Hordé, J.-B. Jollys, and N. Chadourne. 2020. Ageing tests at constant currents and associated modeling of high temperature PEMFC MEAs. Fuel Cells 20 (3):272–84. doi:10.1002/fuce.201900086.
  • Rios, G. M., J. Schirmer, F. Becker, S. Bleeck, C. Gentner, and J. Kallo. 2020. Automotive cold start of a pemfc system by using a methanol solution as antifreeze. ECS Transactions 98 (9):243. doi:10.1149/09809.0243ecst.
  • Rizvandi, O. B., and S. Yesilyurt. 2019. A pseudo three-dimensional, two-phase, non-isothermal model of proton exchange membrane fuel cell. Electrochimica Acta 302:180–97. doi:10.1016/j.electacta.2019.02.018.
  • Rodgers, M. P., L. J. Bonville, H. R. Kunz, D. K. Slattery, and J. M. Fenton. 2012. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime. Chemical Reviews 112 (11):6075–103. doi:10.1021/cr200424d.
  • Saeedan, M., M. Ziaei-Rad, and E. Afshari. 2019. Metal foam as a turbulent flow distributor in the cooling channels of a PEM fuel cell—a numerical study. Physica Scripta 94 (6):064002. doi:10.1088/1402-4896/ab08bc.
  • Sajid Hossain, M., and B. Shabani. 2015. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells. Journal of Power Sources 295:275–91. doi:10.1016/j.jpowsour.2015.07.022.
  • Samuelsen, S., B. Shaffer, J. Grigg, B. Lane, and J. Reed. 2020. Performance of a hydrogen refueling station in the early years of commercial fuel cell vehicle deployment. International Journal of Hydrogen Energy 45 (56):31341–52. doi:10.1016/j.ijhydene.2020.08.251.
  • Sasmito, A. P., E. Birgersson, and A. S. Mujumdar. 2011. Numerical investigation of liquid water cooling for a proton exchange membrane fuel cell stack. Heat Transfer Engineering 32 (2):151–67. doi:10.1080/01457631003769302.
  • Shirzadi, N., R. Roshandel, and M. B. Shafii. 2017. Integration of miniature heat pipes into a proton exchange membrane fuel cell for cooling applications. Heat Transfer Engineering 38 (18):1595–605. doi:10.1080/01457632.2016.1262722.
  • Silva, A. P., R. M. Galante, P. R. Pelizza, and E. Bazzo. 2012. A combined capillary cooling system for fuel cells. Applied Thermal Engineering 41:104–10. doi:10.1016/j.applthermaleng.2012.01.008.
  • Snoussi, L., N. Ouerfelli, X. Chesneau, A. J. Chamkha, F. B. M. Belgacem, and A. Guizani. 2018. Natural convection heat transfer in a nanofluid filled u-shaped enclosures: numerical investigations. Heat Transfer Engineering 39 (16):1450–60. doi:10.1080/01457632.2017.1379343.
  • Sohel, M. R., S. S. Khaleduzzaman, R. Saidur, A. Hepbasli, M. F. M. Sabri, and I. M. Mahbubul. 2014. An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. International Journal of Heat and Mass Transfer 74:164–72. doi:10.1016/j.ijheatmasstransfer.2014.03.010.
  • Song, T., Z. Chen, H. He, Y. Liu, Y. Liu, and S. Ramakrishna. 2015. Orthogonal design study on factors affecting the diameter of perfluorinated sulfonic acid nanofibers during electrospinning. Journal of Applied Polymer Science 132 (14):41755. doi:10.1002/app.41755.
  • Song, Y., C. Zhang, C.-Y. Ling, M. Han, R.-Y. Yong, D. Sun, and J. Chen. 2020. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. International Journal of Hydrogen Energy 45 (54):29832–47. doi:10.1016/j.ijhydene.2019.07.231.
  • Sun, H., H. Chen, and Y. Wan. 2014. Mass transfer in the HT-PEM fuel cell electrode. Energy Procedia 61:1524–27. doi:10.1016/j.egypro.2014.12.161.
  • Supra, J., H. Janßen, W. Lehnert, and D. Stolten. 2013. Design and experimental investigation of a heat pipe supported external cooling system for HT-PEFC stacks. Journal of Fuel Cell Science and Technology 10 (5):051002. doi:10.1115/1.4025052.
  • Tai, X. Y., A. Zhakeyev, H. Wang, K. Jiao, H. Zhang, and J. Xuan. 2019. Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges. Fuel Cells 19 (6):636–50. doi:10.1002/fuce.201900164.
  • Tetuko, A. P., B. Shabani, R. Omrani, B. Paul, and J. Andrews. 2018. Study of a thermal bridging approach using heat pipes for simultaneous fuel cell cooling and metal hydride hydrogen discharge rate enhancement. Journal of Power Sources 397:177–88. doi:10.1016/j.jpowsour.2018.07.030.
  • Wagner, K., and K. H. Hoffmann. 2015. Endoreversible modeling of a PEM fuel cell. Journal of Non-Equilibrium Thermodynamics 40 (4):283–94. doi:10.1515/jnet-2015-0061.
  • Wang, Y., J. Li, Q. Tao, M. H. S. Bargal, M. Yu, X. Yuan, C. Su, and C. Su. 2019b. Thermal management system modeling and simulation of a full-powered fuel cell vehicle. Journal of Energy Resources Technology 142 (6):0124011–1240110. doi:10.1115/1.4044192.
  • Wang, B., R. Lin, D. Liu, J. Xu, and B. Feng. 2019a. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. International Journal of Hydrogen Energy 44 (26):13737–43. doi:10.1016/j.ijhydene.2019.03.139.
  • Wang, Y., P. P. Mukherjee, J. Mishler, R. Mukundan, and R. L. Borup. 2010. Cold start of polymer electrolyte fuel cells: Three-stage startup characterization. Electrochimica Acta 55 (8):2636–44. doi:10.1016/j.electacta.2009.12.029.
  • Wang, J., J. Yuan, and B. Sundén. 2017. On electric resistance effects of non-homogeneous GDL deformation in a PEM fuel cell. International Journal of Hydrogen Energy 42 (47):28537–48. doi:10.1016/j.ijhydene.2017.09.119.
  • Wang, J., J. Yuan, J.-S. Yu, and B. Sundén. 2017. Investigation of effects of non-homogenous deformation of gas diffusion layer in a PEM fuel cell. International Journal of Energy Research 41 (14):2121–37. doi:10.1002/er.3774.
  • Wei, Y., Y. Zhao, and H. Yun. 2021. Research on PEMFC internal temperature predictions and thermal management strategy based on a Kalman algorithm. Journal of Energy Engineering 147 (3):04021010. doi:10.1061/(ASCE)EY.1943-7897.0000753.
  • Weiyu, S., 2019. SAIC/Shanghai hydrogen propulsion technology: The development & application of fuel cell technology for transportation [online]. CTI Symposium China 2019:Automotive drivetrains, Intelligent, Electrified The latest technology trends of Audi, Dongfeng, GAC, SAIC, and Jing-Jin Electric. Available from: https://www.marklines.com/en/report_all/rep1935_201910#report_area_6 [Accessed 4 January 2022].
  • Wen, C.-Y., Y.-S. Lin, C.-H. Lu, and T.-W. Luo. 2011. Thermal management of a proton exchange membrane fuel cell stack with pyrolytic graphite sheets and fans combined. International Journal of Hydrogen Energy 36 (10):6082–89. doi:10.1016/j.ijhydene.2011.02.052.
  • Werner, C., L. Busemeyer, and J. Kallo. 2015. The impact of operating parameters and system architecture on the water management of a multifunctional PEMFC system. International Journal of Hydrogen Energy 40 (35):11595–603. doi:10.1016/j.ijhydene.2015.02.012.
  • Wlodarczyk, R. 2019. Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells — A review. Functional Materials Letters 12 (2):1930001. doi:10.1142/S1793604719300019.
  • Xu, J., C. Zhang, R. Fan, H. Bao, Y. Wang, S. Huang, C. S. Chin, and C. Li. 2020. Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle. Energy 199:117495. doi:10.1016/j.energy.2020.117495.
  • Yan, X., C. Lin, Z. Zheng, J. Chen, G. Wei, and J. Zhang. 2020. Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Applied Energy 258:114073. doi:10.1016/j.apenergy.2019.114073.
  • Yan, X., Y. Peng, Y. Shen, S. Shen, G. Wei, J. Yin, and J. Zhang. 2021. The use of phase-change cooling strategy in proton exchange membrane fuel cells: A numerical study. Science China Technological Sciences 64 (12):2762–70. doi:10.1007/s11431-021-1889-4.
  • Yan, X., W. Zheng, X. Ruan, Y. Pan, X. Wu, and G. He. 2016. The control and optimization of macro/micro-structure of ion conductive membranes for energy conversion and storage. Chinese Journal of Chemical Engineering 24 (5):558–71. doi:10.1016/j.cjche.2016.03.003.
  • Yao, Z., Z. Zhang, M. Hu, J. Hou, L. Wu, and T. Xu. 2018. Perylene-based sulfonated aliphatic polyamides for fuel cell applications: Performance enhancement by stacking of polymer chains. Journal of Membrane Science 547:43–50. doi:10.1016/j.memsci.2017.10.032.
  • Yin, C., Y. Gao, K. Li, D. Wu, Y. Song, and H. Tang. 2021. Design and numerical analysis of air-cooled proton exchange membrane fuel cell stack for performance optimization. Energy Conversion and Management 245:114604. doi:10.1016/j.enconman.2021.114604.
  • Yuan, -W.-W., K. Ou, and Y.-B. Kim. 2020. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization. Applied Thermal Engineering 167:114715. doi:10.1016/j.applthermaleng.2019.114715.
  • Zakaria, I., Z. Michael, and K. Fahd. 2015. A review of nanofluid adoption in polymer electrolyte membrane (PEM) fuel cells as an alternative coolant. Journal of Mechanical Engineering and Sciences 8:1351–66. doi:10.15282/jmes.8.2015.10.0132.
  • Zakaria, I., W. A. N. W. Mohamed, A. M. I. B. Mamat, R. Saidur, W. H. Azmi, R. Mamat, and S. F. A. Talib. 2015. Experimental investigation of Al2O3 - water ethylene glycol mixture nanofluid thermal behaviour in a single cooling plate for pem fuel cell application. Energy Procedia 79:252–58. doi:10.1016/j.egypro.2015.11.474.
  • Zakaria, I. A., W. A. N. W. Mohamed, M. B. Zailan, and W. H. Azmi. 2019. Experimental analysis of SiO2-Distilled water nanofluids in a polymer electrolyte membrane fuel cell parallel channel cooling plate. International Journal of Hydrogen Energy 44 (47):25850–62. doi:10.1016/j.ijhydene.2019.07.255.
  • Zeng, T., C. Zhang, Z. Huang, M. Li, S. H. Chan, Q. Li, and X. Wu. 2019. Experimental investigation on the mechanism of variable fan speed control in open cathode PEM fuel cell. International Journal of Hydrogen Energy 44 (43):24017–27. doi:10.1016/j.ijhydene.2019.07.119.
  • Zhang, X., X. Chen, B. Lin, and J. Chen. 2011. Maximum equivalent efficiency and power output of a PEM fuel cell/refrigeration cycle hybrid system. International Journal of Hydrogen Energy 36 (3):2190–96. doi:10.1016/j.ijhydene.2010.11.088.
  • Zhang, G., and K. Jiao. 2018. Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review. Journal of Power Sources 391:120–33. doi:10.1016/j.jpowsour.2018.04.071.
  • Zhang, H., S. Li, and K. Jermsittiparsert. 2020. Optimal design of a proton exchange membrane fuel cell-based combined cooling, heating, and power system by an enhanced version of farmland fertility optimizer. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2020.1829203.
  • Zhang, X., M. Ni, W. He, and F. Dong. 2015. Theoretical analysis and optimum integration strategy of the PEM fuel cell and internal combustion engine hybrid system for vehicle applications. International Journal of Energy Research 39 (12):1664–72. doi:10.1002/er.3369.
  • Zhang, C., T. Yu, J. Yi, Z. Liu, K. A. R. Raj, L. Xia, Z. Tu, and S. H. Chan. 2016. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system. Energy Conversion and Management 129:36–42. doi:10.1016/j.enconman.2016.10.008.
  • Zhao, J., Z. Huang, B. Jian, X. Bai, and Q. Jian. 2020. Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers. Energy Conversion and Management 213:112830. doi:10.1016/j.enconman.2020.112830.
  • Zhao, J., Q. Jian, and Z. Huang. 2020. Experimental study on heat transfer performance of vapor chambers with potential applications in thermal management of proton exchange membrane fuel cells. Applied Thermal Engineering 180:115847. doi:10.1016/j.applthermaleng.2020.115847.
  • Zhu, D., Y. Ait-Amirat, A. N’Diaye, and A. Djerdir. 2019. Active thermal management between proton exchange membrane fuel cell and metal hydride hydrogen storage tank considering long-term operation. Energy Conversion and Management 202:112187. doi:10.1016/j.enconman.2019.112187.
  • Zhu, Y., W. H. Zhu, and B. J. Tatarchuk. 2014. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy. Journal of Power Sources 256:250–57. doi:10.1016/j.jpowsour.2014.01.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.