414
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Assessment and comparison of the operation of an unmanned aerial vehicle’s propulsion system based on the different fuel cells

, &
Pages 3294-3312 | Received 22 Sep 2021, Accepted 26 Mar 2022, Published online: 14 Apr 2022

References

  • Aghaie, M., M. Mehrpooya, and F. Pourfayaz. 2016. Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration. Energy Conversion and Management 124:141–54. doi:10.1016/j.enconman.2016.07.001.
  • Aguiar, P., D. Brett, and N. Brandon. 2008. Solid oxide fuel cell/gas turbine hybrid system analysis for high-altitude long-endurance unmanned aerial vehicles. International Journal of Hydrogen Energy 33 (23):7214–23. doi:10.1016/j.ijhydene.2008.09.012.
  • Ahmadi, M. H., et al. 2016. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. Journal of Natural Gas Science and Engineering 34:428–38. doi:10.1016/j.jngse.2016.07.014.
  • Arat, H. T., et al. 2020. Conceptual design analysis for a lightweight aircraft with a fuel cell hybrid propulsion system. energy sources, part A: Recovery. Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1773966.
  • Bahari, M., et al. 2021. Performance evaluation and multi-objective optimization of a novel UAV propulsion system based on PEM fuel cell, vol. 311, 122554.Fuel.
  • Baldinelli, A., et al. 2021. An extensive model for renewable energy electrochemical storage with solid oxide cells based on a comprehensive analysis of impedance deconvolution. Journal of Energy Storage 33:102052. doi:10.1016/j.est.2020.102052.
  • Bayrak, Z. U., U. Kaya, and E. Oksuztepe. 2020. Investigation of PEMFC performance for cruising hybrid powered fixed-wing electric UAV in different temperatures. International Journal of Hydrogen Energy 45 (11):7036–45. doi:10.1016/j.ijhydene.2019.12.214.
  • Brett, D. J., et al. 2007. Operational experience of an IT-SOFC/battery hybrid system for automotive applications. ECS Transactions. 7(1):113. doi:10.1149/1.2729080.
  • Cai, W. 2019. Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach. Renewable Energy 143:1–8.
  • Cheng, S., et al. 2021. A new hybrid solar photovoltaic/phosphoric acid fuel cell and energy storage system. Energy and Exergy Performance. International Journal of Hydrogen Energy. 46(11):8048–66. doi:10.1016/j.ijhydene.2020.11.282.
  • Dali, A., et al. 2021. A novel effective nonlinear state observer based robust nonlinear sliding mode controller for a 6 kW proton exchange membrane fuel cell voltage regulation. Sustainable Energy Technologies and Assessments 44:100996. doi:10.1016/j.seta.2021.100996.
  • De Wagter, C., et al. 2021. The NederDrone: A hybrid lift, hybrid energy hydrogen UAV. International Journal of Hydrogen Energy. 46(29):16003–18. doi:10.1016/j.ijhydene.2021.02.053.
  • Depcik, C., et al. 2020. Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle. Energy Conversion and Management 207:112514. doi:10.1016/j.enconman.2020.112514.
  • Fan, X., H. Sun, Z. Yuan, Z. Li, R. Shi, and N. Ghadimi. et al. 2020. High Voltage Gain DC/DC Converter Using Coupled Inductor and VM Techniques. IEEE Access. Vol. 8. IEEE Access. 131975–131987. doi:10.1109/ACCESS.2020.3002902.
  • Gang, B. G., H. Kim, and S. Kwon. 2017. Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles. Vol. 141, 1547–54. Energy
  • Gang, B. G., and S. Kwon. 2018. Design of an energy management technique for high endurance unmanned aerial vehicles powered by fuel and solar cell systems. International Journal of Hydrogen Energy 43 (20):9787–96. doi:10.1016/j.ijhydene.2018.04.049.
  • Ge, J., et al. 2021. A trajectory optimization method for reducing magnetic disturbance of an internal combustion engine powered unmanned aerial vehicle. Vol. 116. Aerospace Science and Technology.106885.
  • Gong, A., and D. Verstraete. 2017. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs. International Journal of Hydrogen Energy 42 (33):21311–33. doi:10.1016/j.ijhydene.2017.06.148.
  • González-Espasandín, Ó., et al. 2019. Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of unmanned aerial vehicles. Renewable Energy 130:762–73. doi:10.1016/j.renene.2018.06.105.
  • Han, Erfeng, and Noradin Ghadimi. ”Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm.” Sustainable Energy Technologies and Assessments 52 (2022): 102005.
  • Hansen, O. R. 2020. Liquid hydrogen releases show dense gas behavior. International Journal of Hydrogen Energy 45 (2):1343–58. doi:10.1016/j.ijhydene.2019.09.060.
  • Hari, B., et al. 2019. A computational fluid dynamics and finite element analysis design of a microtubular solid oxide fuel cell stack for fixed wing mini unmanned aerial vehicles. International Journal of Hydrogen Energy. 44(16):8519–32. doi:10.1016/j.ijhydene.2019.01.170.
  • Ji, Z., et al. 2019. Thermodynamic performance evaluation of a turbine-less jet engine integrated with solid oxide fuel cells for unmanned aerial vehicles. Applied Thermal Engineering 160:114093. doi:10.1016/j.applthermaleng.2019.114093.
  • Ji, Z., et al. 2020. Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles. Vol. 202. Energy. 117532.
  • Jin, W., and Y.-G. Lee. 2014. Computational analysis of the aerodynamic performance of a long-endurance UAV. International Journal of Aeronautical and Space Sciences 15 (4):374–82. doi:10.5139/IJASS.2014.15.4.374.
  • Khanmohammadi, S., et al. 2021. Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit. Sustainable Energy Technologies and Assessments 43:100810. doi:10.1016/j.seta.2020.100810.
  • Kim, K., et al. 2011. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles. Journal of Power Sources. 196(21):9069–75. doi:10.1016/j.jpowsour.2011.01.038.
  • Lapeña-Rey, N., et al. 2017. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. International Journal of Hydrogen Energy. 42(10):6926–40. doi:10.1016/j.ijhydene.2017.01.137.
  • Lee, Y., et al. 2020. Weight optimization of hydrogen storage vessels for quadcopter UAV using genetic algorithm. International Journal of Hydrogen Energy. 45(58):33939–47. doi:10.1016/j.ijhydene.2020.09.014.
  • Lin, G., X. Wang, and A. Rezazadeh. 2021. Electrical energy storage from a combined energy process based on solid oxide fuel cell and use of waste heat. Sustainable Energy Technologies and Assessments 48:101663. doi:10.1016/j.seta.2021.101663.
  • Liu, J. et alet al. 2020. An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles. Journal of Energy Storage 27:101057.
  • Marefati, M., and M. Mehrpooya. 2019a. Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production 240:118247. doi:10.1016/j.jclepro.2019.118247.
  • Marefati, M., and M. Mehrpooya. 2019b. Introducing a hybrid photovoltaic solar, proton exchange membrane fuel cell and thermoelectric device system. Sustainable Energy Technologies and Assessments 36:100550. doi:10.1016/j.seta.2019.100550.
  • Marefati, M., M. Mehrpooya, and S. A. Mousavi. 2019. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process. International Journal of Hydrogen Energy 44 (57):30256–79. doi:10.1016/j.ijhydene.2019.09.074.
  • Marefati, M., M. Mehrpooya, and M. B. Shafii. 2019. A hybrid molten carbonate fuel cell and parabolic trough solar collector, combined heating and power plant with carbon dioxide capturing process. Energy Conversion and Management 183:193–209. doi:10.1016/j.enconman.2019.01.002.
  • Mehrpooya, M., H. Dehghani, and S. A. Moosavian. 2016. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system. Journal of Power Sources 306:107–23.
  • Miansari, M., et al. 2009. Experimental and thermodynamic approach on proton exchange membrane fuel cell performance. Journal of Power Sources. 190(2):356–61. doi:10.1016/j.jpowsour.2009.01.082.
  • Oh, T. H. 2018. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission. Energy Conversion and Management 176:349–56. doi:10.1016/j.enconman.2018.09.036.
  • Okumus, E., et al. 2017. Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle. International Journal of Hydrogen Energy. 42(4):2691–97. doi:10.1016/j.ijhydene.2016.09.009.
  • Ozbek, E., et al. 2021. Architecture design and performance analysis of a hybrid hydrogen fuel cell system for unmanned aerial vehicle. International Journal of Hydrogen Energy. 46(30):16453–64. doi:10.1016/j.ijhydene.2020.12.216.
  • Peng, M. Y.-P., et al. 2020. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustainable Energy Technologies and Assessments 39:100713. doi:10.1016/j.seta.2020.100713.
  • Rostami, M., M. Dehghan Manshadi, and E. Afshari. 2022. Performance evaluation of two proton exchange membrane and alkaline fuel cells for use in UAVs by investigating the effect of operating altitude. International Journal of Energy Research 46 (2): 1481–1496.
  • Satheesh Kumar, M., et al., Blockchain based peer to peer communication in autonomous drone operation. Energy Reports, 2021.
  • Seo, J.-E., et al. 2014. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles. Journal of Power Sources 254:329–37. doi:10.1016/j.jpowsour.2013.11.112.
  • Shamel, A., et al. 2016. Designing a PID controller to control a fuel cell voltage using the imperialist competitive algorithm. Advances in Science and Technology Research Journal 10 (30).
  • Stroman, R. O., et al. 2014. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle. International Journal of Hydrogen Energy. 39(21):11279–90. doi:10.1016/j.ijhydene.2014.05.065.
  • Swider-Lyons, K., et al. 2011. Hydrogen fuel cell propulsion for long endurance small UVAs. AIAA Centennial of Naval Aviation Forum” 100 Years of Achievement and Progress”
  • Wang, S., W. Li, and H. Fooladi. 2021. Performance evaluation of a polygeneration system based on fuel cell technology and solar photovoltaic and use of waste heat. Vol. 72, 103055. Sustainable Cities and Society
  • Wang, Z., X. Zhang, and A. Rezazadeh. 2021. Hydrogen fuel and electricity generation from a new hybrid energy system based on wind and solar energies and alkaline fuel cell. Vol. 7, 2594–604. Energy Reports
  • Yang, Z. 2021. Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renewable and Sustainable Energy Reviews 148:111295.
  • Yang, C., S. Moon, and Y. Kim. 2016. A fuel cell/battery hybrid power system for an unmanned aerial vehicle. Journal of Mechanical Science and Technology 30 (5):2379–85. doi:10.1007/s12206-016-0448-3.
  • Yu, D., et al. 2020. Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique. Journal of Energy Storage 27:101054. doi:10.1016/j.est.2019.101054.
  • Zhang, X., et al. 2018. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs. International Journal of Hydrogen Energy 43(21):10094–103. doi:10.1016/j.ijhydene.2018.04.075.
  • Zhang, C., et al. 2021. Parameter analysis of power system for solar-powered unmanned aerial vehicle. Applied Energy 295:117031. doi:10.1016/j.apenergy.2021.117031.
  • Zhang, J., M. Khayatnezhad, and N. Ghadimi. 2022. Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African Vulture Optimization Algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 44(1):287–305.
  • Zhao, F., and A. V. Virkar. 2005. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources 141 (1):79–95. doi:10.1016/j.jpowsour.2004.08.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.