150
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Developing neural networks-based prediction model of real-time fuel consumption rate for motorcycles: A case study in Vietnam

, , &
Pages 3164-3177 | Received 30 Aug 2021, Accepted 29 Mar 2022, Published online: 17 Apr 2022

References

  • Bifulco, G., F. Galante, L. Pariota, and M. Spena. 2015. A linear model for the estimation of fuel consumption and the impact evaluation of advanced driving assistance systems. Sustainability 7 (10):14326–43. doi:10.3390/su71014326.
  • Dinh, T., K. Nguyen, T. Pham, and V. Nguyen. 2020. Study on performance enhancement and emission reduction of used carburetor motorcycles fueled by flex-fuel gasoline-ethanol blends. Journal of the Chinese Institute of Engineers 1–12. doi:10.1080/02533839.2020.1751719.
  • Duc, K. N., and V. N. Duy. 2018. Study on performance enhancement and emission reduction of used fuel-injected motorcycles using bi-fuel gasoline-LPG. Energy for Sustainable Development 43:60–67. doi:10.1016/j.esd.2017.12.005.
  • Duc, K. N., Y.-L. T. Nguyen, T. Nguyen Duy, T.-D. Nghiem, L. Anh-Tuan, and T. Pham Huu. 2021. A robust method for collecting and processing the on-road instantaneous data of fuel consumption and speed for motorcycles. Journal of the Air & Waste Management Association 71 (1):81–101. doi:10.1080/10962247.2020.1834470.
  • Duy Tien, N., K. Vu Quang, N. The Luong, P. Huu Tuyen, and N. Duc Khanh. 2020. Study on improving emission conversion efficiency of three way catalyst equipped on carburetor motorcycle by air supplement system. International Journal of Ambient Energy 1–23. doi:10.1080/01430750.2020.1725635.
  • Duy, V. N., K. N. Duc, T. N. Thanh, L. H. Dinh, and T. Le Anh. 2020. Implementation of fuel additive MAZ 100 for performance enhancement of compressed natural gas engine converted from in-used gasoline engine. Journal of the Air & Waste Management Association 70 (9):932–43. doi:10.1080/10962247.2020.1781709.
  • Giraldo, M., and J. I. Huertas. 2019. Real emissions, driving patterns and fuel consumption of in-use diesel buses operating at high altitude. Transportation Research Part D: Transport and Environment 77:21–36. doi:10.1016/j.trd.2019.10.004.
  • Giwa, S. O., S. O. Adekomaya, K. O. Adama, and M. O. Mukaila. 2015. Prediction of selected biodiesel fuel properties using artificial neural network. Frontiers in Energy 9 (4):433–45. doi:10.1007/s11708-015-0383-5.
  • Hoang, A. T., S. Nižeti?, H. C. Ong, W. Tarelko, T. H. Le, M. Q. Chau, and X. P. Nguyen. 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments 47:101416. doi:10.1016/j.seta.2021.101416.
  • Hoang, A. T., V. D. Tran, V. H. Dong, and A. T. Le. 2019. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. Journal of Marine Engineering & Technology 1–9. doi:10.1080/20464177.2019.1595355.
  • Kan, Z., L. Tang, M.-P. Kwan, and X. Zhang. 2018. Estimating vehicle fuel consumption and emissions using GPS big data. International Journal of Environmental Research and Public Health 15 (4):566. doi:10.3390/ijerph15040566.
  • Kara Togun, N., and S. Baysec. 2010. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Applied Energy 87 (1):349–55. doi:10.1016/j.apenergy.2009.08.01.
  • Kim, D., and J. Lee. 2010. Application of neural network model to vehicle emissions. International Journal of Urban Sciences 14 (3):264–75. doi:10.1080/12265934.2010.9693684.
  • Le, L. T., G. Lee, K.-S. Park, and H. Kim. 2020. Neural network-based fuel consumption estimation for container ships in Korea. Maritime Policy & Management 1–18. doi:10.1080/03088839.2020.1729437.
  • Le, A.-T., M. T. Pham, T. T. Nguyen, and D. V. Nguyen. 2013. Measurements of emission factors and fuel consumption for motocycles on a chassis dynamometer based on a localized driving cycle. ASEAN Engineering Journal Part C 1 (1):73–85.
  • Liew, S. S., M. Khalil-Hani, and R. Bakhteri 2016. “Bounded Activation Functions for Enhanced Training Stability of Deep Neural Networks on Visual Pattern Recognition Problems”. Neurocomputing 216:718–734. doi:10.1016/j.neucom.2016.08.037.
  • Pamuła, T. 2016. Classification of road traffic conditions based on texture features of traffic images using neural networks. Scientific Journal of Silesian University of Technology. Series Transport 92:101–09. doi:10.20858/SJSUTST.2016.92.10.
  • Parlak, A., Y. Islamoglu, H. Yasar, and A. Egrisogut. 2006. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Applied Thermal Engineering 26 (8–9):824–28. doi:10.1016/j.applthermaleng.2005.10.006.
  • Perrotta, F., T. Parry, and L. C. Neves. 2017. Application of machine learning for fuel consumption modelling of trucks. IEEE International Conference on Big Data (Big Data), pp. 3810–15, doi:10.1109/BigData.2017.8258382.
  • Samuel, O. D., M. O. Okwu, L. K. Tartibu, S. O. Giwa, M. Sharifpur, and Z. O. Jagun. 2021. Modelling of Nicotiana Tabacum L. Oil Biodiesel Production: Comparison of ANN and ANFIS. Frontiers in Energy Research 8:377. doi:10.3389/fenrg.2020.612165.
  • Satiennam, T., A. Seedam, T. Radpukdee, W. Satiennam, W. Pasangtiyo, and Y. Hashino. 2017. Development of on-road exhaust emission and fuel consumption models for motorcycles and application through traffic microsimulation. Journal of Advanced Transportation 2017:1–10. doi:10.1155/2017/3958967.
  • Sharma, S., D. Sharma, S. L. Soni, and D. Singh. 2020. Effect of acetylene fuelling on performance, emission and combustion characteristics of stationary spark‐ignition engine. Environmental Progress & Sustainable Energy 39 (5). doi: 10.1002/ep.13451.
  • Sharma, S., D. Sharma, S. L. Soni, D. Singh, and A. Jhalani. 2019. Performance, combustion and emission analysis of internal combustion engines fuelled with acetylene – A review. International Journal of Ambient Energy 1–19. doi:10.1080/01430750.2019.1663369.
  • Smit, R. 2013. Development and performance of a new vehicle emissions and fuel consumption software (PΔP) with a high resolution in time and space. Atmospheric Pollution Research 4 (3):336–45. doi:10.5094/apr.2013.038.
  • Wang, J., & Rakha, H. A. 2016. Fuel consumption model for conventional diesel buses. Applied Energy, 170, 394–402. doi:10.1016/j.apenergy.2016.02.12
  • Yen_Lien, T. N. 2020. Determining the set of representative variables of real-world driving cycle of bus: A case study of Hanoi. Transport and Communications Science Journal 71 (4):317–27. doi:10.25073/tcsj.71.4.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.