569
Views
3
CrossRef citations to date
0
Altmetric
Review

The effect of nanorefrigerants on performance of the vapor compression refrigeration system: A comprehensive review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3178-3204 | Received 30 Sep 2021, Accepted 30 Mar 2022, Published online: 12 Apr 2022

References

  • Adelekan, D. S., O. S. Ohunakin, T. O. Babarinde, M. K. Odunfa, R. O. Leramo, S. O. Oyedepo, and D. C. Badejo. 2017. Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator. Case Studies in Thermal Engineering 9:55‒61. doi:10.1016/j.csite.2016.12.002.
  • Adelekan, D. S., O. S. Ohunakin, J. Gill, O. E. Atiba, I. P. Okokpujie, and A. A. Atayero. 2019a. Experimental investigation of a vapour compression refrigeration system with 15 nm TiO2-R600a nano-refrigerant as the working fluid. Procedia Manufacturing 35:1222‒1227. doi:10.1016/j.promfg.2019.06.079.
  • Adelekan, D. S., O. S. Ohunakin, J. Gill, I. P. Okokpujie, and O. E. Atiba. 2019b. Performance of an iso-butane driven domestic refrigerator infused with various concentrations of graphene based nanolubricants. Procedia Manufacturing 35:1146‒1151. doi:10.1016/j.promfg.2019.06.069.
  • Adelekan, D. S., O. S. Ohunakin, M. H. Oladeinde, G. Jatinder, O. E. Atiba, M. O. Nkiko, and A. A. Atayero. 2021. Performance of a domestic refrigerator in varying ambient temperatures, concentrations of TiO2 nanolubricants and R600a refrigerant charges. Heliyon 7 (2):e0615613. doi:10.1016/j.heliyon.2021.e06156.
  • Afzal, O., W. K. Shafi, and M. S. Charoo. 2020. Effect of h-BN nanoparticles on the tribological and rheological properties of API-Group I Oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1864516.
  • Ajayi, O. O., D. E. Ukasoanya, M. Ogbonnaya, E. Y. Salawu, I. P. Okokpujie, S. A. Akinlabi, E. T. Akinlabi, and F. T. Owoeye. 2019. Investigation of the effect of R134a/Al2O3–nanofluid on the performance of a domestic vapour compression refrigeration system. Procedia Manufacturing 35:112‒117. doi:10.1016/j.promfg.2019.05.012.
  • Akhavan-Behabadi, M. A., A. Torabian, and M. Nasr. 2016. Effect of multi-wall carbon nanotubes on flow condensation heat transfer of R-600a/oil mixture. Proceedings of Academics World 27th International Conference, 28th March, Paris, France. 2016, 16‒20.
  • Aktas, M., A. S. Dalkilic, A. Celen, A. Cebi, O. Mahian, and S. Wongwises. 2015. A theoretical comparative study on nanorefrigerant performance in a single-stage vapor-compression refrigeration cycle. Advances in Mechanical Engineering 7 (1):12. doi:10.1155/2014/138725.
  • Alavianmehr, M. M., F. Pahlavan, J. Moghadasi, and S. M. Hosseini. 2014. Modeling thermodynamic properties of refrigerants from new version of Tao-Mason equation of state. International Journal of Refrigeration 45:100‒106. doi:10.1016/j.ijrefrig.2014.06.008.
  • Alawi, O. A., J. M. Salih, and A. R. Mallah. 2019. Thermo-physical properties effectiveness on the coefficient of performance of Al2O3/R141b nano-refrigerant. International Communications in Heat and Mass Transfer 103:54‒61. doi:10.1016/j.icheatmasstransfer.2019.02.011.
  • Alawi, O. A., and N. A. C. Sidik. 2014. Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant. International Communications in Heat and Mass Transfer 58:79‒84. doi:10.1016/j.icheatmasstransfer.2014.08.038.
  • Babarinde, T. O., S. A. Akinlabi, and D. M. Madyira. 2020. Energy performance evaluation of R600a/MWCNT-nanolubricant as a drop-in replacement for R134a in household refrigerator system. Energy Reports 6 (2):639‒647. doi:10.1016/j.egyr.2019.11.132.
  • Babarinde, T. O., S. A. Akinlabi, D. M. Madyira, and F. M. Ekundayo. 2020. Enhancing the energy efficiency of vapour compression refrigerator system using R600a with graphene nanolubricant. Energy Reports 6 (2):1‒10. doi:10.1016/j.egyr.2019.11.031.
  • Bhattad, A., J. Sarkar, and P. Ghosh. 2018. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews 82:3656‒3669. doi:10.1016/j.rser.2017.10.097.
  • Brignoli, R., J. S. Brown, H. M. Skye, and P. A. Domanski. 2017. Refrigerant performance evaluation including effects of transport properties and optimized heat exchangers. International Journal of Refrigeration 80:52‒65. doi:10.1016/j.ijrefrig.2017.05.014.
  • Carvalho, J. E. S. P., P. O. Sotomayor, J. A. R. Parise, and F. Pradelle. 2020. Numerical assessment of critical properties of nanofluids: Applications to nanorefrigerants and nanolubricants. Journal of Molecular Liquids 318:113938. doi:10.1016/j.molliq.2020.113938.
  • Chauhan, S. S. 2020. Performance evaluation of ice plant operating on R134a blended with varied concentration of Al2O3–SiO2/PAG composite nanolubricant by experimental approach. International Journal of Refrigeration 113:196‒205. doi:10.1016/j.ijrefrig.2020.01.021.
  • Chauhan, S. S., R. Kumar, and S. P. S. Rajput. 2019. Performance investigation of ice plant working with R134a and different concentrations of POE/TiO2 nanolubricant using experimental method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (4):163. doi:10.1007/s40430-019-1657-3.
  • Choi, T. J., D. J. Kim, S. P. Jang, S. Park, and S. Ko. 2021. Effect of polyolester oil-based multiwalled carbon-nanotube nanolubricant on the coefficient of performance of refrigeration systems. Applied Thermal Engineering 192:116941. doi:10.1016/j.applthermaleng.2021.116941.
  • Ciconkov, R. 2018. Refrigerants: There is still no vision for sustainable solutions. International Journal of Refrigeration 86:441‒448. doi:10.1016/j.ijrefrig.2017.12.006.
  • Coumaressin, T., and K. Palaniradja. 2014. Performance analysis of a refrigeration system using nano fluid. International Journal of Advanced Mechanical Engineering 4 (4):459‒470.
  • Coumaressin, T., K. Palaniradja, M. Sathishkumar, and R. Mathivanan. 2016. Performance analysis of vapor compression refrigeration system using Al2O3/TiO2/CuO–R1234yf nano fluid as refrigerant. International Conference on Breakthrough in Engineering, Science & Technology – 2016 ( INC-BEST’16) 3, Salem, Tamil Nadu, India:215‒219.
  • Darzi, M., M. K. Sadoughi, and M. Sheikholeslami. 2018. Condensation of nano-refrigerant inside a horizontal tube. Physica B: Condensed Matter 537:33‒39. doi:10.1016/j.physb.2018.02.002.
  • Dhamneya, A. K., S. P. S. Rajput, and A. Singh. 2018. Comparative performance analysis of ice plant test rig with TiO2-R134a nano refrigerant and evaporative cooled condenser. Case Studies in Thermal Engineering 11:55‒61. doi:10.1016/j.csite.2017.12.004.
  • Domanski, P. A., and M. O. McLinden. 1992. A simplified cycle simulation model for the performance rating of refrigerants and refrigerant mixtures. International Journal of Refrigeration 15 (2):81‒88. doi:10.1016/0140-7007(92)90031-O.
  • Faizan, A., and D. Han. 2016. Thermophysical property and heat transfer analysis of R245fa/Al2O3 nanorefrigerant. The International Journal of Engineering and Science 5 (4):45‒53.
  • Fuskele, V., and R. M. Sarviya. 2017. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Materials Today: Proceedings, Hyderabad, India, 4:4049‒4060. doi:10.1016/j.matpr.2017.02.307.
  • Gao, N., G. Chen, and L. Tang. 2018. A corresponding state equation for the prediction of isobaric heat capacity of liquid HFC and HFO refrigerants. Fluid Phase Equilibria 456:1‒6. doi:10.1016/j.fluid.2017.08.015.
  • Gill, J., and J. Singh. 2017. Energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant. International Journal of Refrigeration 84:287‒299. doi:10.1016/j.ijrefrig.2017.08.001.
  • Gill, J., J. Singh, O. S. Ohunakin, and D. S. Adelekan. 2018. Energetic and exergetic analysis of a domestic refrigerator system with LPG as a replacement for R134a refrigerant, using POE lubricant and mineral oil based TiO2-SiO2- and Al2O3-lubricants. International Journal of Refrigeration 91:122‒135. doi:10.1016/j.ijrefrig.2018.05.010.
  • Harby, K. 2017. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renewable and Sustainable Energy Reviews 73:1247–64. doi:10.1016/j.rser.2017.02.039.
  • Jatinder, G., O. S. Ohunakin, D. S. Adelekan, O. E. Atiba, A. B. Daniel, J. Singh, and A. A. Atayero. 2019. Performance of a domestic refrigerator using selected hydrocarbon working fluids and TiO2–MO nanolubricant. Applied Thermal Engineering 160:11400412. doi:10.1016/j.applthermaleng.2019.114004.
  • Joshi, Y., D. Zanwar, and S. Joshi. 2021. Performance investigation of vapor compression refrigeration system using R134a and R600a refrigerants and Al2O3 nanoparticle based suspension. Materials Today: Proceedings 44 (1):1511‒1519. doi:10.1016/j.matpr.2020.11.732.
  • Ko, J., and J. H. Jeong. 2018. Effects of a non-equilibrium two-phase refrigerant flow at subcooled temperatures on the performance of an R-600a refrigeration system. International Journal of Refrigeration 87:118–30. doi:10.1016/j.ijrefrig.2017.10.029.
  • Kolekar, R. D. 2014. An experimental study of the flow boiling of refrigerant-based nanofluids. PhD Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 2014.
  • Krishnan, R. S., M. Arulprakasajothi, K. Logesh, N. D. Raja, and M. Rajendra. 2018. Analysis and feasibility of nano-lubricant in vapour compression refrigeration system. Materials Today: Proceedings 5 (9):20580‒20587. doi:10.1016/j.matpr.2018.06.437.
  • Kumar, V. P. S., A. Baskaran, and K. M. Subaramanian. 2016. A performance study of vapour compression refrigeration system using ZrO2 nano particle with R134a and R152a. International Journal of Scientific and Research Publications 6 (12):410‒421.
  • Kumar, S., B. Kanimozhi, and M. S. Kumar. 2021. Performance evaluation of refrigeration system using nano-fluid. Materials Today: Proceedings, Chennai, India, 44:3838‒3845. doi:10.1016/j.matpr.2020.12.339.
  • Kumar, R., D. K. Singh, and S. Chander. 2020. An experimental approach to study thermal and tribology behavior of LPG refrigerant and MO lubricant appended with ZnO nanoparticles in domestic refrigeration cycle. Heat and Mass Transfer 56 (7):2303‒2311. doi:10.1007/s00231-020-02860-7.
  • Kushwaha, P. K., P. Shrivastava, and A. K. Shrivastava. 2016. Experimental study of nanorefrigerant (R134a+Al2O3) based on vapor compression refrigeration system. International Journal of Mechanical and Production Engineering 4 (3):90‒95.
  • Lee, J.-H., S.-H. Lee, C. J. Choi, S. P. Jang, and S. U. S. Choi. 2010. A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport 1 (4):269‒322. doi:10.1260/1759-3093.1.4.269.
  • Li, Z., K. Liang, and H. Jiang. 2019. Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system. Applied Thermal Engineering 153:646‒654. doi:10.1016/j.applthermaleng.2019.03.050.
  • Lin, L., H. Peng, and G. Ding. 2018. Model for predicting particle size evolution during nano particle aggregation in refrigerant–oil mixture. International Journal of Heat and Mass Transfer 119:91‒104. doi:10.1016/j.ijheatmasstransfer.2017.11.095.
  • Mahdi, Q. S., M. A. Theeb, and H. Saed. 2017. Enhancement on the performance of refrigeration system using the nano-refrigerant. Journal of Energy and Power Engineering 11 (4):237‒243. doi:10.17265/1934-8975/2017.04.004.
  • Maheshwary, P. B., C. C. Handa, and K. R. Nemade. 2018. Effect of shape on thermophysical and heat transfer properties of ZnO/R-134a nanorefrigerant. Materials Today: Proceedings, Ongole, Andhra Pradesh, India, 5:1635‒1639. doi:10.1016/j.matpr.2017.11.257.
  • Mishra, R. S. 2017. Use of nano materials for thermodynamic performance improvement of vapor compression refrigeration system using R134a eco-friendly refrigerant. International Journal of Research in Engineering and Innovation 1 (5):90‒96.
  • Mishra, R. S., and R. K. Jaiswal. 2015. Thermal performance improvements of vapour compression refrigeration system using eco friendly based nanorefrigerants in primary circuit. International Journal of Advance Research and Innovation 3 (3):524‒535.
  • Mishra, R. S., and R. Jaiswal. 2017. Thermo physical property of nano-refrigerant: Preparation, thermal characteristics, and applications. International Journal of Research in Engineering and Innovation 1 (3):163‒170.
  • Mishra, R. S., and D. Kumar. 2017. Experimental investigation for enhancing thermal performance of vapour compression refrigeration system using nano fluids. International Journal of Research in Engineering and Innovation 1 (3):49‒60.
  • Mohamed, H. E. A. S., K. Bilen, K. Dağidir, and E. Arcaklioğlu. 2018. Investigation of the effect of nanorefrigerants on performance of the vapor compression refrigeration cycle: A review study. 1st International Conference on Advances in Mechanical and Mechatronics Engineering (ICAMMEN 2018), Ankara, Turkey, 79‒87.
  • Mohan, K., S. Sundararaj, K. G. Kannan, and A. Kannan. 2020. Experimental analysis on refrigeration system using CNT, gold & HAuCl4 nano fluids. Materials Today: Proceedings, Ongole, Andhra Pradesh, India, 33:360‒366. doi:10.1016/j.matpr.2020.04.156.
  • Mohod, V. P., and N. W. Kale. 2017. Experimental analysis of vapour compression refrigeration system using nanorefrigerant. International Journal of Mechanical and Production Engineering 5 (3):71‒75.
  • Nair, V., A. D. Parekh, and P. R. Tailor. 2020. Experimental investigation of a vapour compression refrigeration system using R134a/nano-oil mixture. International Journal of Refrigeration 112:21‒36. doi:10.1016/j.ijrefrig.2019.12.009.
  • Nair, V., P. R. Tailor, and A. D. Parekh. 2016. Nanorefrigerants: A comprehensive review on its past, present and future. International Journal of Refrigeration 67:290‒307. doi:10.1016/j.ijrefrig.2016.01.011.
  • Nawi, M. R. M., M. Z. A. Rehim, W. H. Azmi, and S. A. Razak. 2018. The characterization and thermo-physical property investigations of SiO2/HFE7000 nano-refrigerants. International Journal of Refrigeration 88:275‒283. doi:10.1016/j.ijrefrig.2018.02.006.
  • Nemati, A., H. Nami, and M. Yari. 2017. A comparison of refrigerants in a two-stage ejector-expansion transcritical refrigeration cycle based on exergoeconomic and environmental analysis. International Journal of Refrigeration 84:139‒150. doi:10.1016/j.ijrefrig.2017.09.002.
  • Ohunakin, O. S., D. S. Adelekan, T. O. Babarinde, R. O. Leramo, F. I. Abam, and C. D. Diarra. 2017. Experimental investigation of TiO2-SiO2- and Al2O3-lubricants for a domestic refrigerator system using LPG as working fluid. Applied Thermal Engineering 127:1469‒1477. doi:10.1016/j.applthermaleng.2017.08.153.
  • Pawale, K. T., A. H. Dhumal, and G. M. Kerkal. 2017. Performance analysis of VCRS with nano-refrigerant. International Research Journal of Engineering and Technology 4 (4):1031‒1037.
  • Pico, D. F. M., L. R. R. Silva, O. S. H. Mendoza, and E. P. B. Filho. 2020. Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. International Journal of Heat and Mass Transfer 152:11949311. doi:10.1016/j.ijheatmasstransfer.2020.119493.
  • Pico, D. F. M., L. R. R. Silva, P. S. Schneider, and E. P. B. Filho. 2019. Performance evaluation of diamond nanolubricants applied to a refrigeration system. International Journal of Refrigeration 100:104‒112. doi:10.1016/j.ijrefrig.2018.12.009.
  • Pinni, K. S., A. S. Katarkar, and S. Bhaumik. 2021. A review on the heat transfer characteristics of nanomaterials suspended with refrigerants in refrigeration systems. Materials Today: Proceedings, India, 44:1331‒1335. doi:10.1016/j.matpr.2020.11.389.
  • Praveen, B. R., J. Shaika, J. J. Raju, P. Padmanathan, and A. Satheesh. 2021. A critical review on nanorefrigerants: Boiling, condensation and tribological properties. International Journal of Refrigeration 128:139‒152. doi:10.1016/j.ijrefrig.2020.12.0270.
  • Raghavalu, K. V., P. S. Reddy, A. R. Khan, D. V. Kumar, and T. Prashanth. 2016. Improvement of COP of vapor compression refrigeration system by using nano-refrigerants. National Conference on Recent Trends & Innovations in Mechanical Engineering – (by IJSRD), April 2016, India, 2016, 172‒175.
  • Raghavulu, K. V., and N. G. Rasu. 2021. An experimental study on the improvement of coefficient of performance in vapor compression refrigeration system using graphene lubricant additives. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2021.1909186.
  • Razzaq, M. E. A., and J. U. Ahamed. 2020. Thermodynamic analysis of an air conditioner using R22/HC blend with TiO2/mineral oil nanolubricant to retrofit R22/POE oil. Results in Engineering 8:10016610. doi:10.1016/j.rineng.2020.100166.
  • Redhwan, A. A. M., W. H. Azmi, M. Z. Sharif, and R. Mamat. 2016. Development of nano refrigerants for various types of refrigerant based: A comprehensive review on performance. International Communications in Heat and Mass Transfer 76:285‒293. doi:10.1016/j.icheatmasstransfer.2016.06.007.
  • Salem, M. R. 2020. Performance enhancement of a vapor compression refrigeration system using R134a/MWCNT-oil mixture and liquid-suction heat exchanger equipped with twisted tape turbulator. International Journal of Refrigeration 120:357‒369. doi:10.1016/j.ijrefrig.2020.09.009.
  • Sanukrishna, S. S., M. Murukan, and P. M. Jose. 2018. An overview of experimental studies on nanorefrigerants : Recent research, development and applications. International Journal of Refrigeration 88:552‒577. doi:10.1016/j.ijrefrig.2018.03.013.
  • Sanukrishna, S. S., A. S. Vishnu, and P. M. Jose. 2017. Nanorefrigerants for energy efficient refrigeration systems. Journal of Mechanical Science and Technology 31 (8):3993‒4001. doi:10.1007/s12206-017-0746-4.
  • Saravanan, K., and R. Vijayan. 2018. First law and second law analysis of Al 2 O 3 /TiO 2 nano composite lubricant in domestic refrigerator at different evaporator temperature. Materials Research Express 5 (9):095015. doi:10.1088/2053-1591/aad72d.
  • Senthilkumar, D. 2017. Influence of silicon carbide nanopowder in R134a refrigerant used in vapor compression refrigeration system. International Journal of Air-Conditioning and Refrigeration 25 (1):1750007. doi:10.1142/S2010132517500079.
  • Senthilkumar, A., E. P. Abhijith, C. A. A. Jawhar, and Jamshid. 2021a. Experimental investigation of Al2O3/SiO2 hybrid nanolubriant in R600a vapour compression refrigeration system. Materials Today: Proceedings 45 (7):5921‒5924. doi:10.1016/j.matpr.2020.08.779.
  • Senthilkumar, A., P. V. Abhishek, M. Adithyan, and A. Arjun. 2021b. Experimental investigation of CuO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings 45 (7):6083‒6086. doi:10.1016/j.matpr.2020.10.178.
  • Senthilkumar, A., and A. Anderson. 2021. Experimental investigation of SiO2 nanolubricants for R410A vapour compression refrigeration system. Materials Today: Proceedings 44 (5):3613‒3617. doi:10.1016/j.matpr.2020.09.659.
  • Senthilkumar, A., A. Anderson, and R. Praveen. 2020. Prospective of nanolubricants and nano refrigerants on energy saving in vapour compression refrigeration system – A review. Materials Today: Proceedings, Ongole, Andhra Pradesh, India, 33:886‒889. doi:10.1016/j.matpr.2020.06.416.
  • Senthilkumar, A., and R. Praveen. 2015. Performance analysis of a domestic refrigerator using CuO–R600a nano–refrigerant as working fluid. Journal of Chemical and Pharmaceutical Sciences 9:30‒33.
  • Senthilkumar, A., P. A. M. Sahaluddeen, M. N. Noushad, and E. K. M. Musthafa. 2021c. Experimental investigation of ZnO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings 45 (7):6087‒6093. doi:10.1016/j.matpr.2020.10.180.
  • Senthilkumar, G., K. Saravanan, and K. A. Kumar. 2017. Investigation on nano refrigeration. IOP Conference Series: Materials Science and Engineering 7–9 July 2016, Sathyabama University, Chennai, India 197:0120285. doi:10.1088/1757-899X/197/1/012028.
  • Shareef, A. S., H. N. Azziz, and H. S. Hadi. 2018. Experimental study: The effects of using nano-lubrication on the performance of refrigeration systems. Materials Science and Engineering 433:012052. doi:10.1088/1757-899X/433/1/012052.
  • Sharif, M. Z., W. H. Azmi, A. A. M. Redhwan, R. Mamat, and T. M. Yusof. 2017. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. International Journal of Refrigeration 75:204‒216. doi:10.1016/j.ijrefrig.2017.01.004.
  • Sharma, A., M. Duggal, R. S. Dondapati, and P. R. Usurumarti. 2016. Investigation on thermo-physical properties of domestic nano-refrigerants to be used in refrigeration systems. 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences – 2016 1-2 June 2016 Tadepalligudem, India ( EEECOS 2016), 115‒120.
  • Sheikholeslami, M., M. Darzi, and M. K. Sadoughi. 2018. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer 122:643‒650. doi:10.1016/j.ijheatmasstransfer.2018.02.015.
  • Shrivastava, S., and S. Chhalotre. 2017. An experimental analysis of the performance of refrigeration system based on (R134a+Al2O3) refrigerant. International Journal Online of Science 3 (4):5.
  • Singh, K., and K. Lal. 2014. An investigation into the performance of a nanorefrigerant (R134a+Al2O3) based refrigeration system. International Journal of Research in Mechanical Engineering & Technology 4 (2):158‒162.
  • Soliman, A. M. A., A. K. A. Rahman, and S. Ookawara. 2019. Enhancement of vapor compression cycle performance using nanofluids. Journal of Thermal Analysis and Calorimetry 135 (2):1507‒1520. doi:10.1007/s10973-018-7623-y.
  • Sözen, A., E. Özbaş, T. Menlik, M. T. Çakır, M. Gürü, and K. Boran. 2014. Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study. International Journal of Refrigeration 44:73‒80. doi:10.1016/j.ijrefrig.2014.04.018.
  • Veerasamy, A., K. Balakrishnan, and S. A. Razack. 2021. Statistical optimization of closed loop pulsating heat pipe parameters with R-410a and nanorefrigerant in air conditioning applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2021.1916130.
  • Venkatarathnam, G., and S. S. Murthy. 2012. Refrigerants for vapour compression refrigeration systems. Resonance – Journal of Science Education 17 (2):139‒162.
  • Yıldız, G., Ü. Ağbulut, and A. E. Gürel. 2021. A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems. International Journal of Refrigeration 129:342‒364. doi:10.1016/j.ijrefrig.2021.05.016.
  • Yilmaz, C. Y. 2020. Performance evaluation of a refrigeration system using nanolubricant. Applied Nanoscience 10 (5):1667‒1678. doi:10.1007/s13204-020-01258-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.