273
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comparative study of thermal and combustion kinetics for raw and bio-chars of eucalyptus wood and bark

, , , , &
Pages 3313-3329 | Received 25 Feb 2021, Accepted 30 Mar 2022, Published online: 14 Apr 2022

References

  • Abdullah, H., and H. Wu. 2009. Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy and Fuels 23 (8):4174–81. doi:10.1021/ef900494t.
  • Adegbeye, M.J., A.Z.M. Salem, P.R.K. Reddy, M.M.M.Y. Elghandour, K.J. Oyebamiji. 2020. Chapter 1: Waste Recycling for the Eco-friendly Input Use Efficiency in Agriculture and Livestock Feeding. In Resources Use Efficiency in Agriculture. Singapore Pte Ltd, Malaysia: Springer Nature.
  • Adeniyi, A.G., J.O. Ighalo, D.V. Onifade. 2020. Biochar from the Thermochemical Conversion of Orange (Citrus sinensis) Peel and Albedo. Product Quality and Potential Applications. Chem. Africa 3:439–448. doi:10.1007/s42250-020-00119-6.
  • Akbari, M., A. O. Oyedun, and A. Kumar. 2020. Techno-economic assessment of wet and dry torrefaction of biomass feedstock. Energy 207:118287. doi:10.1016/j.energy.2020.118287.
  • Anukam, A., S. Mamphweli, P. Reddy, O. Okoh, and E. Meyer. 2015. An investigation into the impact of reaction temperature on various parameters during torrefaction of sugarcane bagasse relevant to gasification. J. Chem. Arti: Journal of Chemistry , 1–12. doi:10.1155/2015/235163.
  • Arias, B., C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology 89 (2):169–75. doi:10.1016/j.fuproc.2007.09.002.
  • Arteaga-Pérez, L. E., C. Segura, V. Bustamante-García, O. G. Cápiro, and R. Jiménez. 2015. Torrefaction of wood and bark from eucalyptus globulus and eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy 93:1731–41. doi:10.1016/j.energy.2015.10.007.
  • Ashraf, A., H. Sattar, and S. Munir. 2019a. Thermal decomposition study and pyrolysis kinetics of coal and agricultural residues under non-isothermal conditions. Fuel 235:504–14. doi:10.1016/j.fuel.2018.07.120.
  • Ashraf, A., H. Sattar, and S. Munir. 2019b. A comparative applicability study of model-fitting and moel-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues. Fuel 240:326–33. doi:10.1016/j.fuel.2018.11.149.
  • Aysu, T., and H. Durak. 2015. Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. J. Anal. Appl. Pyrolysis 111:156–172. doi:10.1016/j.jaap.2014.11.017.
  • Bada, S. O., R. M. S. Falcon, and L. M. Falcon. 2014. Investigation of combustion and co-combustion characteristics of raw and thermal treated bamboo with thermal gravimetric analysis. Thermochimica Acta 589:207–14. doi:10.1016/j.tca.2014.05.021.
  • Bernardino, C. A. R., C. F. Mahler, M. C. C. Veloso, and G. A. Romeiro. 2017. Preparation of biochar from sugarcane by-product filter mud by slow pyrolysis and its use like adsorbent. Waste and Biomass Valorization 8 (7):2511–21. doi:10.1007/s12649-016-9728-5.
  • CABI (2021). Eucalyptus camaldulensis (red gum). Invasive Species Compendium. URL https://www.cabi.org/isc/datasheet/22596#todistributionDatabaseTable (accessed 23 September 2021).
  • Chen, W. H., B. J. Lin, B. Colin, J. S. Chang, A. Pétrissans, X. Bi, and M. Pétrissans. 2018. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Applied Energy 231:768–76. doi:10.1016/j.apenergy.2018.09.135.
  • Colloff, M. 2014. Flooded forest and desert creek: ecology and history of the river red gum. Collingwood, Australia: CSIRO Publishing.
  • Dawood, S., T. K. Sen, and C. Phan. 2016. Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: Kinetic, equilibrium, mechanism, thermodynamic and process design. Desalination and Water Treatment 57 (59):28964–80. doi:10.1080/19443994.2016.1188732.
  • Durak, H. 2016. Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A Recover. Util. Environ. Eff. 38:1400–1409. doi:10.1080/15567036.2014.947446.
  • Forestry, G. (2009). Eucalyptologics, information resources on Eucalyptus cultivation around the world. URLhttp://git-forestry-blog.blogspot.com/2009/10/global-eucalyptus-map-2009-in-buenos.html (accessed 20 October 2020).
  • Gezae, A., and M. Chandraratne. 2018. Biochar Production From Biomass Waste-Derived Material, In Reference Module in Materials Science and Materials Engineering. Elsevier. doi:10.1016/B978-0-12-803581-8.11249-4.
  • Ghasemian, A., M. Eslami, F. Hasanvand, H. Bozorgi, and H. R. Al-abodi. 2019. Eucalyptus camaldulensis properties for use in the eradication of infections. Comparative Immunology, Microbiology and Infectious Diseases 65:234–37. doi:10.1016/j.cimid.2019.04.007.
  • Ghetti, P., L. Ricca, and L. Angelini. 1996. Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75 (5):565–73. doi:10.1016/0016-2361(95)00296-0.
  • Gubba, S. R., L. Ma, M. Pourkashanian, and A. Williams. 2011. Influence of particle shape and internal thermal gradients of biomass particles on pulverised coal/biomass co-fired flames. Fuel Processing Technology 92 (11):2185–95. doi:10.1016/j.fuproc.2011.07.003.
  • Ibrahim, R. H. H., L. I. Darvell, J. M. Jones, and A. Williams. 2013. Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis 103:21–30. doi:10.1016/j.jaap.2012.10.004.
  • Idris, S. S., N. A. Rahman, and K. Ismail. 2012. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology 123:581–91. doi:10.1016/j.biortech.2012.07.065.
  • Irfan, M., M. Gulsher, S. Abbas, Q. Syed, M. Nadeem, and S. Baig. 2011. Effect of various pretreatment conditions on enzymatic saccharification. Songklanakarin J. Sci. Technol 33:397–404.
  • James, R .A.M. Yuan, W. Boyette, and M.D. Wang. 2018. Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier. Renew. Energy 117:116–124. doi:10.1016/j.renene.2017.10.034.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2017. Combustion properties and kinetics of different biomass samples using TG–MS technique. Journal of Thermal Analysis and Calorimetry 127 (2):1361–70. doi:10.1007/s10973-016-6042-1.
  • Jones, J. M., L. I. Darvell, T. G. Bridgeman, M. Pourkashanian, and A. Williams. 2007. An investigation of the thermal and catalytic behaviour of potassium in biomass combustion. Proceedings of the Combustion Institute 31 (2):1955–63. doi:10.1016/j.proci.2006.07.093.
  • Khiari, B., I. Ghouma, A.I. Ferjani, A.A. Azzaz, S. Jellali, L. Limousy, and M. Jeguirim. 2020. Kenaf stems: Thermal characterization and conversion for biofuel and biochar production. Fuel 262:116654. doi:10.1016/j.fuel.2019.116654.
  • Kirch, T., P.R. Medwell, C.H. Birzer, and P.J., van Eyk. 2020. Small-scale autothermal thermochemical conversion of multiple solid biomass feedstock. Renew. Energy 149:1261–1270. doi:10.1016/j.renene.2019.10.120.
  • Li, S. X., C. Z. Chen, M. F. Li, and X. Xiao. 2018. Torrefaction of corn cob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource Technology 249:348–53. doi:10.1016/j.biortech.2017.10.026.
  • Liu, Z., and G. Han. 2015. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–65. doi:10.1016/j.fuel.2015.05.032.
  • López-González, D., M. Fernandez-Lopez, J. L. Valverde, and L. Sanchez-Silva. 2013. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresource Technology 143:562–74. doi:10.1016/j.biortech.2013.06.052.
  • Lopez-Velazquez, M. A., V. Santes, J. Balmaseda, and E. Torres-Garcia. 2013. Pyrolysis of Orange waste: A thermo-kinetic study. Journal of Analytical and Applied Pyrolysis 99:170–77. doi:10.1016/j.jaap.2012.09.016.
  • Lu, J. J., and W. H. Chen. 2015. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy 160:49–57. doi:10.1016/j.apenergy.2015.09.026.
  • Lv, D., M. Xu, X. Liu, Z. Zhan, Z. Li, and H. Yao. 2010. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology 91 (8):903–09. doi:10.1016/j.fuproc.2009.09.014.
  • Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J.Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C.Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. 2018. IPCC, 2018: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
  • McNamee, P., L. I. Darvell, J. M. Jones, and A. Williams. 2015. The combustion characteristics of high-heating-rate chars from untreated and torrefied biomass fuels. Biomass & Bioenergy 82:63–72. doi:10.1016/j.biombioe.2015.05.016.
  • Miranda, I., J. Gominho, I. Mirra, and H. Pereira. 2013. Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products 41:299–305. doi:10.1016/j.indcrop.2012.04.024.
  • Mould, E. D., and C. T. Robbins. 1981. Evaluation of Detergent Analysis in Estimating Nutritional Value of Browse Eric D . Mould?; Charles T . Robbins EVALUATION OF DETERGENT ANALYSIS IN ESTIMATING 45:937–47.
  • Neto, J.M., A. Komesu, L.H. da Silva Martins, V.O.O. Gonçalves, J.A.R. de Oliveira, and M. Rai. 2019. Chapter 10 - Third generation biofuels: an overview, In Sustainable Bioenergy, Elsevier, ed. M. Rai, A.P. Ingle, 283–298. doi:10.1016/B978-0-12-817654-2.00010-1.
  • Nevzorova, T., and V. Kutcherov. 2019. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews 26:100414. doi:10.1016/j.esr.2019.100414.
  • Nie, Q. H., S. Z. Sun, and Z. Q. Li. 2001. Thermogravimetric analysis of the combustion characteristic of the brown coal blends. Combusit. Sci. Technol 7:71–76.
  • Nowakowski, D. J., J. M. Jones, R. M. D. Brydson, and A. B. Ross. 2007. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86 (15):2389–402. doi:10.1016/j.fuel.2007.01.026.
  • Ong, H.C., W.H. Chen, A. Farooq, Y.Y. Gan, K.T. Lee, and V. Ashokkumar. 2019. Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renew. Sustain. Energy Rev 113:109266. doi:10.1016/j.rser.2019.109266.
  • Panahi, A., Y. A. Levendis, N. Vorobiev, and M. Schiemann. 2017. Direct observations on the combustion characteristics of Miscanthus and Beechwood biomass including fusion and spheroidization. Fuel Processing Technology 166:41–49. doi:10.1016/j.fuproc.2017.05.029.
  • Panwar, N. L., A. Pawar, and B. L. Salvi. 2019. Comprehensive review on production and utilization of biochar. SN Applied Sciences 1 (2):1–19. doi:10.1007/s42452-019-0172-6.
  • Pereira, B. L. C., A. D. C. O. Carneiro, A. M. M. L. Carvalho, J. L. Colodette, A. C. Oliveira, and M. P. F. Fontes. 2013. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources 8 (3):4574–92. doi:10.15376/biores.8.3.4574-4592.
  • Pinheiro Pires, A. P., J. Arauzo, I. Fonts, M. E. Domine, A. Fernández Arroyo, M. E. Garcia-Perez, J. Montoya, F. Chejne, P. Pfromm, and M. Garcia-Perez. 2019. Challenges and opportunities for bio-oil refining: A review. Energy and Fuels 33 (6):4683–720. doi:10.1021/acs.energyfuels.9b00039.
  • Prins, M. J., K. J. Ptasinski, and F. J. J. G. Janssen. 2006. Torrefaction of wood. Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 77 (1):28–34. doi:10.1016/j.jaap.2006.01.002.
  • Riaza, J., J. Gibbins, and H. Chalmers. 2017. Ignition and combustion of single particles of coal and biomass. Fuel 202:650–55. doi:10.1016/j.fuel.2017.04.011.
  • Rizvi, A. H., S. S. Daood, M. T. Javed, S. Munir, M. Pourkashanian, and W. Nimmo. 2015. Reactivity Analysis of Pakistani Thar Lignite Reserves in Oxidizing Thermogravimetric Analysis Atmospheres. Energy and Fuels 29 (8):5349–60. doi:10.1021/acs.energyfuels.5b00748.
  • Rousset, P., C. Aguiar, N. Labbé, and J. M. Commandré. 2011. Enhancing the combustible properties of bamboo by torrefaction. Bioresource Technology 102 (17):8225–31. doi:10.1016/j.biortech.2011.05.093.
  • Ru, B., S. Wang, G. Dai, and L. Zhang. 2015. Effect of Torrefaction on Biomass Physicochemical Characteristics and the Resulting Pyrolysis Behavior. Energy and Fuels 29 (9):5865–74. doi:10.1021/acs.energyfuels.5b01263.
  • Sattar, H., I. Muzaffar, and S. Munir. 2020. Thermal and kinetic study of rice husk, corn cobs, peanut crust and Khushab coal under inert (N2) and oxidative (dry air) atmospheres. Renewable Energy 149:794–805. doi:10.1016/j.renene.2019.12.020.
  • Sayed, E.T., T. Wilberforce, K. Elsaid, M.K.H. Rabaia, M.A. Abdelkareem, K.J. Chae, and A.G. Olabi. 2021. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ 766:144505. doi:10.1016/j.scitotenv.2020.144505.
  • Schmitt, C.C., R. Moreira, R.C. Neves, D. Richter, A. Funke, K. Raffelt, J.D. Grunwaldt, and N. Dahmen. 2020. From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Process. Technol 197:106199. doi:10.1016/j.fuproc.2019.106199.
  • Song, W., and M. Guo. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 94:138–145. doi:10.1016/j.jaap.2011.11.018.
  • Strezov, V., M. Patterson, V. Zymla, K. Fisher, T. J. Evans, and P. F. Nelson. 2007. Fundamental aspects of biomass carbonisation. Journal of Analytical and Applied Pyrolysis 79 (1–2):91–100. doi:10.1016/j.jaap.2006.10.014.
  • Suman, S. 2020. Conversion of Solid Biomass into Biochar: Act as a Green, Eco-Friendly Energy Source and a Substitute of Fossil Fuel Inputs 34. doi:10.3390/wef-06916.
  • Tareen, W.U.K., M.T. Dilbar, M. Farhan, M.A. Nawaz, A.W. Durrani, K.A. Memon, S. Mekhilef, M. Seyedmahmoudian, B. Horan, and M. Amir. (2020). Present status and potential of biomass energy in pakistan based on existing and future renewable resources. Sustain 12. doi:10.3390/su12010249.
  • Tippayawong, N., Rerkkriangkrai, P., Aggarangsi, P., and Pattiya, A. (2017). Biochar Production from Cassava Rhizome in a Semi-continuous Carbonization System. Energy Procedia 141:109–113. doi:10.1016/j.egypro.2017.11.021.
  • Toptas, A., Y. Yildirim, G. Duman, and J. Yanik. 2015. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresource Technology 177:328–36. doi:10.1016/j.biortech.2014.11.072.
  • Tovar, R. T., and R. M. Petzel. 2009. Herbal Toxicity. Disease-a-Month 55 (10):592–641. doi:10.1016/j.disamonth.2009.05.001.
  • Wang, S., X. M. Jiang, X. X. Han, and J. G. Liu. 2009. Combustion characteristics of seaweed biomass. 1. combustion characteristics of enteromorpha clathrata and sargassum natans. Energy and Fuels 23 (10):5173–78. doi:10.1021/ef900414x.
  • Wang, S. Y., Y. K. Tang, C. Chen, J. T. Wu, Z. Huang, Y. Y. Mo, K. X. Zhang, and J. B. Chen. 2015. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal. Bioresource Technology 186:360–64. doi:10.1016/j.biortech.2015.03.139.
  • Wang, S. Y., Y. K. Tang, K. Li, Y. Y. Mo, H. F. Li, and Z. Q. Gu. 2014. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresource Technology 174:67–73. doi:10.1016/j.biortech.2014.10.007.
  • Xiang, W., X. Zhang, J. Chen, W. Zou, F. He, X. Hu, and B. Gao. 2020. Biochar technology in wastewater treatment: A critical review. Chemosphere 252:126539.
  • Xu, F., K. Linnebur, and D. Wang. 2014. Torrefaction of Conservation Reserve Program biomass: A techno-economic evaluation. Industrial Crops and Products 61:382–87. doi:10.1016/j.indcrop.2014.07.030.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yerrayya, A., A.K. Shree Vishnu, S. Shreyas, S.R. Chakravarthy, and R. Vinu. 2020. Hydrothermal liquefaction of rice straw using methanol as co-solvent. Energies 13:1–19. doi:10.3390/en13102618.
  • Yorulmaz, S. Y., and A. T. Atimtay. 2009. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology 90 (7–8):939–46. doi:10.1016/j.fuproc.2009.02.010.
  • Yu, J., K. Maliutina, and A. Tahmasebi. 2018. A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresource Technology 270:689–701. doi:10.1016/j.biortech.2018.08.127.
  • Yücedağ, E., and H. Durak. 2019. Bio-oil and bio-char from lactuca scariola: significance of catalyst and temperature for assessing yield and quality of pyrolysis. Energy Sources, Part A Recover. Util. Environ. Eff 1–14. doi:10.1080/15567036.2019.1645765.
  • Zhang, Y., Y. Cui, P. Chen, S. Liu, N. Zhou, K. Ding, L. Fan, P. Peng, M. Min, Y. Cheng, Y. Wang, Y.Wan, Y. Liu, B. Li, and RuanR. 2019. Chapter 14 - Gasification Technologies and Their Energy Potentials, In Sustainable Resource Recovery and Zero Waste Approaches, ed M.J., Taherzadeh, K. Bolton, J. Wong, A.,Pandey, 193–206. Elsevier. doi:10.1016/B978-0-444-64200-4.00014-1.
  • Zhang, B., P. Fu, Y. Liu, F. Yue, J. Chen, H. Zhou, and C. Zheng. 2017. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion. Applied Thermal Engineering 113:1303–12. doi:10.1016/j.applthermaleng.2016.11.103.
  • Zheng, Y., L. Tao, X. Yang, Y. Huang, C. Liu, J. Gu, and Z. Zheng. 2017. Torrefaction temperature. BioResources 12:3425–47.
  • Zoghlami, A., and G. Paës. 2019. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry 7. Article 874. doi:10.3389/fchem.2019.00874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.