229
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biodiesel production from non-edible crops using waste tyre heterogeneous acid catalyst

ORCID Icon, & ORCID Icon
Pages 3223-3238 | Received 27 Oct 2021, Accepted 30 Mar 2022, Published online: 14 Apr 2022

References

  • Alamu, O., M. Waheed, and S. Jekayinfa. 2009. Determination of optimum temperature for the laboratory preparation of biodiesel from Nigerian palm kernel oil. Energy Sources, Part A 31 (13):1105–14. doi:10.1080/10916460801907195.
  • Ayoob, A. K., and A. B. Fadhil. 2019. Biodiesel production through transesterification of a mixture of non-edible oils over lithium supported on activated carbon derived from scrap tires. Energy Conversion and Management 201:112149. doi:10.1016/j.enconman.2019.112149.
  • Bedir, Ö., and T. H. Doğan. 2021. Use of sugar industry waste catalyst for biodiesel production. Fuel 286:119476. doi:10.1016/j.fuel.2020.119476.
  • Chaichana, E., W. Wiwatthanodom, and B. Jongsomjit. 2019. Carbon-based catalyst from pyrolysis of waste tire for catalytic ethanol dehydration to ethylene and diethyl ether. International Journal of Chemical Engineering 2019.
  • Chen, K.-T., Wang, J.-X., Dai, Y.-M., Wang, P.-H., Liou, C.-Y., Nien, C.-W., Chen, C.-C. 2013. Rice husk ash as a catalyst precursor for biodiesel production. J. Taiwan Inst. Chem. Eng. 44:622–629.
  • Chong, C. T., T. Y. Loe, K. Y. Wong, V. Ashokkumar, S. S. Lam, W. T. Chong, A. Borrion, B. Tian, and J.-H. Ng. 2021. Biodiesel sustainability: The global impact of potential biodiesel production on the energy-water–food (EWF) nexus. Environmental Technology & Innovation 22:101408. doi:10.1016/j.eti.2021.101408.
  • Dang, T. H., B.-H. Chen, and D.-J. Lee. 2013. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol. Bioresource Technology 145:175–81. doi:10.1016/j.biortech.2012.12.024.
  • Fadhil, A. B., E. T. Al-Tikrity, and M. A. Albadree. 2017. Biodiesel production from mixed non-edible oils, castor seed oil and waste fish oil. Fuel 210:721–28. doi:10.1016/j.fuel.2017.09.009.
  • Fadhil, A. B., A. M. Aziz, and M. H. Altamer. 2018. Optimization of methyl esters production from non-edible oils using activated carbon-supported potassium hydroxide as a solid base catalyst. Arab Journal of Basic and Applied Sciences 25 (2):56–65. doi:10.1080/25765299.2018.1449414.
  • Girish, N., S. P. Niju, K. M. M. S. Begum, and N. Anantharaman. 2013. Utilization of a cost-effective solid catalyst derived from natural white bivalve clamshell for transesterification of waste frying oil. Fuel 111:653–58. doi:10.1016/j.fuel.2013.03.069.
  • Harreh, D., A. Saleh, A. Reddy, and S. Hamdan. 2018. An experimental investigation of Karanja biodiesel production in Sarawak, Malaysia. Journal of Engineering 2018:1–8. doi:10.1155/2018/4174205.
  • Kansedo, J., K. T. Lee, and S. Bhatia. 2009. Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy 33 (2):271–76. doi:10.1016/j.biombioe.2008.05.011.
  • Kastner, J. R., J. Miller, D. P. Geller, J. Locklin, L. H. Keith, and T. Johnson. 2012. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today 190 (1):122–32. doi:10.1016/j.cattod.2012.02.006.
  • Lou, W.-Y., M.-H. Zong, and Z.-Q. Duan. 2008. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology 99 (18):8752–58. doi:10.1016/j.biortech.2008.04.038.
  • MacPhee, J. A., A. Panaye, and J.-E. Dubois. 1978. Steric effects—I: A critical examination of the taft steric parameter—Es. definition of a revised, broader and homogeneous scale. Extension to highly congested alkyl groups. Tetrahedron 34 (24):3553–62. doi:10.1016/0040-4020(78)88431-2.
  • Mathew, G. M., D. Raina, V. Narisetty, V. Kumar, S. Saran, A. Pugazhendi, R. Sindhu, A. Pandey, and P. Binod. 2021. Recent advances in biodiesel production: Challenges and solutions. Science of the Total Environment 794:148751.
  • Nabi, M. N., S. N. Hoque, and M. S. Akhter. 2009. Karanja (pongamia pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Processing Technology 90 (9):1080–86. doi:10.1016/j.fuproc.2009.04.014.
  • Narkhede, N., and A. Patel. 2013. Biodiesel production by esterification of oleic acid and transesterification of soybean oil using a new solid acid catalyst comprising 12-tungstosilicic acid and zeolite Hβ. Industrial & Engineering Chemistry Research 52 (38):13637–44. doi:10.1021/ie402230v.
  • Nayak, S. N., M. G. Nayak, and C. P. Bhasin. 2021. Parametric, kinetic, and thermodynamic studies of microwave-assisted esterification of Kusum oil. Fuel Communications 8:100018. doi:10.1016/j.jfueco.2021.100018.
  • Oliveira Neto, G. C. D., L. E. C. Chaves, L. F. R. Pinto, J. C. C. Santana, M. P. C. Amorim, and M. J. F. Rodrigues. 2019. Economic, environmental and social benefits of adoption of pyrolysis process of tires: A feasible and eco-friendly mode to reduce the impacts of scrap tires in Brazil. Sustainability 11 (7):2076. doi:10.3390/su11072076.
  • Paiva Pinheiro Pires, A., L. Martinez-Valencia, A. H. Tanzil, M. Garcia-Perez, J. C. García-Ojeda, B. Bertok, I. Heckl, A. Argoti, and F. Friedler. 2021. Synthesis and Techno-Economic Analysis of Pyrolysis-Oil-Based Biorefineries Using P-Graph. Energy & Fuels 35 (16):13159–69. doi:10.1021/acs.energyfuels.1c01299.
  • Pennell, K. 2002. 2.5 Specific surface area. Methods of soil analysis: Part 4 physical methods. 5:295–315.
  • Rengasamy, M., K. Anbalagan, S. Mohanraj, and V. Pugalenthi. 2014. Biodiesel production from Pongamia pinnata oil using synthesized iron nanocatalyst. International Journal of Chem Tech Research 6:4511–16.
  • Rizwanul Fattah, I., H. Ong, T. Mahlia, M. Mofijur, A. Silitonga, S. Rahman, and A. Ahmad. 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research 8:101. doi:10.3389/fenrg.2020.00101.
  • Rosset, M., and O. W. Perez-Lopez. 2019. FTIR spectroscopy analysis for monitoring biodiesel production by heterogeneous catalyst. Vibrational Spectroscopy 105:102990. doi:10.1016/j.vibspec.2019.102990.
  • Tang, X., S. Niu, S. Zhao, X. Zhang, X. Li, H. Yu, C. Lu, and K. Han. 2019. Synthesis of sulfonated catalyst from bituminous coal to catalyze esterification for biodiesel production with promoted mechanism analysis. Journal of Industrial and Engineering Chemistry 77:432–40. doi:10.1016/j.jiec.2019.05.008.
  • Testa, M. L., and V. La Parola. 2021. Sulfonic acid-Functionalized inorganic materials as Efficient catalysts in various applications: A minireview. Catalysts 11 (10):1143. doi:10.3390/catal11101143.
  • Wang, S., R. Shan, Y. Wang, L. Lu, and H. Yuan. 2019. Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renewable Energy 130:41–49. doi:10.1016/j.renene.2018.06.047.
  • Yatsun, A., P. Konovalov, and N. Konovalov. 2008. Gaseous products of microwave pyrolysis of scrap tires. Solid Fuel Chemistry 42 (3):187–91. doi:10.3103/S0361521908030130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.