556
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Optical modeling of corrugation cavity receiver for large-aperture solar parabolic dish collector

ORCID Icon & ORCID Icon
Pages 3330-3348 | Received 18 Oct 2021, Accepted 01 Apr 2022, Published online: 24 Apr 2022

References

  • The ASAP Primer. 2006. Breault Res Organ Inc.
  • Balaji, S., K. S. Reddy, and T. Sundararajan. 2016. Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors. Applied Energy 179:1138–51. doi:10.1016/J.APENERGY.2016.07.082.
  • Barreto, G., P. Canhoto, and M. Collares-Pereira. 2018. Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers. Applied Energy 215:602–14. doi:10.1016/j.apenergy.2018.02.065.
  • Bellos, E., E. Bousi, C. Tzivanidis, and S. Pavlovic. 2019. Optical and thermal analysis of different cavity receiver designs for solar dish concentrators. Energy Conversion and Management 2:100013. doi:10.1016/j.ecmx.2019.100013.
  • Cherif, H., A. Ghomrassi, J. Sghaier, H. Mhiri, and P. Bournot. 2019. A receiver geometrical details effect on a solar parabolic dish collector performance. Energy Reports 5:882–97. doi:10.1016/J.EGYR.2019.07.010.
  • Cisneros-Cárdenas, N. A., R. Cabanillas-López, R. Pérez-Enciso, G. Martínez-Rodríguez, R. García-Gutiérrez, C. Pérez-Rábago, R. Calleja-Valdez, D. Riveros-Rosas. 2021. Study of the radiation flux distribution in a parabolic dish concentrator. Energies 14 (21):7053. doi:10.3390/EN14217053.
  • Daabo, A. M., S. Mahmoud, and R. K. Al-Dadah. 2016a. The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications. Energy 114:513–25. doi:10.1016/J.ENERGY.2016.08.025.
  • Daabo, A. M., S. Mahmoud, and R. K. Al-Dadah. 2016b. The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications. Applied Energy 179:1081–96. doi:10.1016/j.apenergy.2016.07.064.
  • Daabo, A. M., S. Mahmoud, R. K. Al-Dadah, and A. Ahmad. 2017. Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application. Energy 119:523–39. doi:10.1016/J.ENERGY.2016.12.085.
  • Dähler, F., M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, A. Steinfeld, et al. 2018. Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles. Solar Energy 170:568–75. doi:10.1016/j.solener.2018.05.085.
  • Dassault Systèmes. What’s New - SolidWorks 2016. 2016.
  • Duffie (Deceased), J. A., W. A. Beckman, and N. Blair. 2020. Solar engineering of thermal processes, photovoltaics and wind. Solar Engineering Thermal Process Photovoltaics Wind. doi:10.1002/9781119540328.
  • Hassan, A., C. Quanfang, S. Abbas, W. Lu, and L. Youming. 2021. An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator. Renewable Energy 179:1849–64. doi:10.1016/J.RENENE.2021.07.145.
  • Herrero, R., M. Victoria, S. Askins, C. Domínguez, I. Antón, G. Sala, et al. 2010. Indoor characterization of multi-junction solar cells under non uniform light patterns. AIP Conference Proceedings, 1277, American Institute of PhysicsAIP. 36–38. doi:10.1063/1.3509226.
  • Jaffe, L. D. 1983. DISH CONCENTRATORS FOR SOLAR THERMAL ENERGY. Journal of Energy 7:304–12. doi:10.2514/3.62658.
  • Johnston, G. 1995. Flux mapping the 400 m2Big Dish” at the australian national university. Journal of Solar Energy Engineering 117:290–93. doi:10.1115/1.2847841.
  • Johnston, G. 1998. Focal region measurements of the 20m2 tiled dish at the Australian National University. Solar Energy 63 (2):117–24. doi:10.1016/S0038-092X(98)00041-3.
  • Jones, P. D., and L. Wang. 1995. Concentration distributions in cylindrical receiver/paraboloidal dish concentrator systems. Solar Energy 54:115–23. doi:10.1016/0038-092X(94)00107-O.
  • Kaushika, N. D., and K. S. Reddy. 2000. Performance of a low cost solar paraboloidal dish steam generating system. Energy Conversion and Management 41:713–26. doi:10.1016/S0196-8904(99)00133-8.
  • Kreske, K. 2002. Optical design of a solar flux homogenizer for concentrator photovoltaics. Applied Optics 41 (10):2053–58. doi:10.1364/AO.41.002053.
  • Li, H., W. Huang, F. Huang, P. Hu, and Z. Chen. 2013. Optical analysis and optimization of parabolic dish solar concentrator with a cavity receiver. Solar Energy 92:288–97. doi:10.1016/j.solener.2013.03.011.
  • Li, S., G. Xu, X. Luo, Y. Quan, and Y. Ge. 2016. Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver. Energy 113:95–107. doi:10.1016/j.energy.2016.06.143.
  • Lokeswaran, S., T. K. Mallick, and K. S. Reddy. 2020. Design and analysis of dense array CPV receiver for square parabolic dish system with CPC array as secondary concentrator. Solar Energy 199:782–95. doi:10.1016/J.SOLENER.2020.02.075.
  • Pavlović, S. R., E. Bellos, V. P. Stefanović, C. Tzivanidis, and Z. M. Stamenković. 2016. Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber. Thermal Science 20 (4):1387–97. doi:10.2298/TSCI160213104P.
  • Pavlovic, S., A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah. 2017. Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver. Journal of Cleaner Production 150:75–92. doi:10.1016/j.jclepro.2017.02.201.
  • Pavlovic, S., R. Loni, E. Bellos, D. Vasiljević, G. Najafi, and A. Kasaeian. 2018. Comparative study of spiral and conical cavity receivers for a solar dish collector. Energy Conversion and Management 178:111–22. doi:10.1016/j.enconman.2018.10.030.
  • Rajan, A., and K. S. Reddy. 2021. Estimation of convective heat losses from conical cavity receiver of solar parabolic dish collector under wind conditions and receiver orientations. E3S Web of Conferences 313:11001. doi:10.1051/e3sconf/202131311001.
  • Reddy, K. S., S. K. Natarajan, and G. Veershetty. 2015. Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator. Renewable Energy 74:148–57. doi:10.1016/j.renene.2014.07.058.
  • Reddy, K. S., and N. Sendhil Kumar. 2009. An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator. Solar Energy 83:1884–92. doi:10.1016/J.SOLENER.2009.07.001.
  • Sendhil Kumar, N., and K. S. Reddy. 2008. Comparison of receivers for solar dish collector system. Energy Conversion and Management 49:812–19. doi:10.1016/J.ENCONMAN.2007.07.026.
  • Sharma, J. K., A. Dang, H. P. Garg, and S. S. Mathur. 1983. Solar flux distributions from circular cylindrical concentrators. Solar Energy 30:507–12. doi:10.1016/0038-092X(83)90062-2.
  • Si-Quan, Z., L. Xin-Feng, D. Liu, and M. Qing-Song. 2019. A numerical study on optical and thermodynamic characteristics of a spherical cavity receiver. Applied Thermal Engineering 149:11–21. doi:10.1016/j.applthermaleng.2018.10.030.
  • Soltani, S., M. Bonyadi, and V. Madadi Avargani. 2019. A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver. Energy 168:88–98. doi:10.1016/J.ENERGY.2018.11.097.
  • Wang, F., R. Lin, B. Liu, H. Tan, and Y. Shuai. 2013. Optical efficiency analysis of cylindrical cavity receiver with bottom surface convex. Solar Energy 90:195–204. doi:10.1016/J.SOLENER.2013.01.017.
  • Wu, S. Y., L. Xiao, Y. Cao, and Y. R. Li. 2010. Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review. Solar Energy 84:1342–55. doi:10.1016/j.solener.2010.04.008.
  • Xiao, L., F.-W. Guo, S.-Y. Wu, and Z.-L. Chen. 2020. A comprehensive simulation on optical and thermal performance of a cylindrical cavity receiver in a parabolic dish collector system. Renewable Energy 145:878–92. doi:10.1016/J.RENENE.2019.06.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.