522
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Biomass conversion into activated carbon as a sustainable energy material for the development of supercapacitor devices

, , , , , & show all
Pages 3349-3359 | Received 18 Oct 2021, Accepted 07 Apr 2022, Published online: 20 Apr 2022

References

  • Agustino, A., Awitdrus, A., Amri, A., Taslim, R., Taer, E. 2020. The physical and electrochemical properties of activated carbon electrode derived from pineapple leaf waste for supercapacitor applications. Journal of Physics. Conference Series 1655 (1):012008-1-012008–7. doi:10.1088/1742-6596/1655/1/012008.
  • Apriwandi, A., E. Taer, R. Farma, R. N. Setiadi, and E. Amiruddin. 2021. A facile approach of micro-mesopores structure binder-free coin/monolith solid design activated carbon for electrode supercapacitor. J Energy Storage 40 (June):102823. doi:10.1016/j.est.2021.102823.
  • Arvind, D., and G. Hegde. 2015. Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications - a review. RSC Advances 5 (107):88339–52. doi:10.1039/c5ra19392c.
  • Awitdrus, A. , Juliani, R., Taer, E., Farma, R., Iwantono, I., Deraman, M. 2018. Supercapacitor electrodes based on corn stalk binderless activated carbon. Journal of Physics. Conference Series 1120 (1):012005-1-012005–7. doi:10.1088/1742-6596/1120/1/012005.
  • Chaitra, K., T. R. Vinny, P. Sivaraman, N. Reddy, C. Hu, K. Venkatesh, S. C. Vivek, N. Nagaraju, and N. Kathyayini. 2017. KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor. J Energy Chem 26 (1):56–62. doi:10.1016/j.jechem.2016.07.003.
  • Cheng, J., S. C. Hu, G. T. Sun, K. Kang, M. Q. Zhu, and Z. C. Geng. 2021. Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application. Energy 215:119144. doi:10.1016/j.energy.2020.119144.
  • Cheng, Y., L. Wu, C. Fang, T. Li, J. Chen, M. Yang, and Q. Zhang. 2020. Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors. J Mater Res Technol 9 (3):3261–71. doi:10.1016/j.jmrt.2020.01.022.
  • Chiu, Y. H., and L. Y. Lin. 2019. Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers 101:177–85. doi:10.1016/j.jtice.2019.04.050.
  • Elaiyappillai, E., R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, and P. M. Johnson. 2019. Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science 486 (May):527–38. doi:10.1016/j.apsusc.2019.05.004.
  • Fan, Y. M., W. L. Song, X. Li, and L. Z. Fan. 2017. Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon N Y 111:658–66. doi:10.1016/j.carbon.2016.10.056.
  • Fan, L., B. Zhu, P. C. Su, and C. He. 2018. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45:148–76. doi:10.1016/j.nanoen.2017.12.044.
  • Gou, Q., C. Li, W. Zhong, X. Zhang, Q. Dong, and C. Lei. 2019. Hierarchical structured porous N-doped carbon coating MnO microspheres with enhanced electrochemical performances as anode materials for lithium-ion batteries. Electrochimica acta 296:730–37. doi:10.1016/j.electacta.2018.11.104.
  • Guo, F., X. Jiang, X. Jia, S. Liang, L. Qian, and Z. Rao. 2019. Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. Journal of Electroanalytical Chemistry 844 (May):105–15. doi:10.1016/j.jelechem.2019.05.004.
  • Hao, E., W. Liu, S. Liu, Y. Zhang, H. Wang, S. Chen, F. Cheng, S. Zhao, and H. Yang. 2017. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J Mater Chem A 5 (5):2204–14. doi:10.1039/C6TA08169J.
  • Hérou, S., M. Crespo Ribadeneyra, P. Schlee, H. Luo, L. C. Tanase, C. Roβberg, and M. Titirici. 2020. The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors. J Energy Chem 53:36–48. doi:10.1016/j.jechem.2020.04.068.
  • Jain, A., and S. K. Tripathi. 2014. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Mater Sci Eng B Solid-State Mater Adv Technol 183 (1):54–60. doi:10.1016/j.mseb.2013.12.004.
  • Jiang, X., F. Guo, X. Jia, Y. Zhan, H. Zhou, and L. Qian. 2020. Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors. J Energy Storage 30 (January):101451. doi:10.1016/j.est.2020.101451.
  • Kan, Y., Q. Yue, J. Kong, B. Gao, and Q. Li. 2015. The application of activated carbon produced from waste printed circuit boards (PCBs) by H3PO4 and steam activation for the removal of malachite green. Chem Eng J 260:541–49. doi:10.1016/j.cej.2014.09.047.
  • Kumar, T. R., R. A. Senthil, Z. Pan, J. Pan, and Y. Sun. 2020. A tubular-like porous carbon derived from waste American poplar fruit as advanced electrode material for high-performance supercapacitor. J Energy Storage 32 (September):101903. doi:10.1016/j.est.2020.101903.
  • Li, M., and J. Xue. 2014. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. The Journal of Physical Chemistry C 118 (5):2507–17. doi:10.1021/jp410198r.
  • Lv, S., L. Ma, X. Shen, and H. Tong. 2021. One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors. Microporous and Mesoporous Materials: The Official Journal of the International Zeolite Association 310 (August 2020):110670. doi:10.1016/j.micromeso.2020.110670.
  • Ma, F., S. Ding, H. Ren, and Y. Liu. 2019. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Advances 9 (5):2474–83. doi:10.1039/c8ra09685f.
  • Qin, L., Z. Hou, S. Zhang, W. Zhang, and E. Jiang. 2020. Supercapacitive charge storage properties of porous carbons derived from pine nut shells. Journal of Electroanalytical Chemistry 866:114140. doi:10.1016/j.jelechem.2020.114140.
  • Senthilkumar, S. T., B. Senthilkumar, S. Balaji, C. Sanjeeviraja, and R. K. Selvan. 2011. Preparation of activated carbon from sorghum pith and its structural and electrochemical properties. Materials Research Bulletin 46 (3):413–19. doi:10.1016/j.materresbull.2010.12.002.
  • Serafin, J., M. Baca, M. Biegun, E. Mijowska, R. J. Kaleńczuk, J. Sreńscek-Nazzal, and B. Michalkiewicz. 2019. Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Applied Surface Science 497 (August):143722. doi:10.1016/j.apsusc.2019.143722.
  • Sevilla, M., N. Diez, G. A. Ferrero, and A. B. Fuertes. 2019. Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Materials 18:356–65. doi:10.1016/j.ensm.2019.01.023.
  • Simon, P., and Y. Gogotsi . 2008. Materials for electrochemical capacitors. Nature Materials 7 :845–54. doi:https://doi.org/10.1038/nmat2297.
  • Sodtipinta, J., T. Amornsakchai, and P. Pakawatpanurut. 2017. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode. Adv Nat Sci Nanosci Nanotechnol 8 (3):1–10. doi:10.1088/2043-6254/aa7233.
  • Song, X., X. Ma, Y. Li, L. Ding, and R. Jiang. 2019. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science 487 (May):189–97. doi:10.1016/j.apsusc.2019.04.277.
  • Tabarov, F. S., M. V. Astakhov, A. T. Kalashnik, A. A. Klimont, I. S. Krechetov, and N. V. Isaeva. 2019. Micro-mesoporous carbon materials prepared from the hogweed (Heracleum) stalks as electrode materials for supercapacitors. Russ J Electrochem 55 (4):265–71. doi:10.1134/S1023193519020125.
  • Taer, E., A. Agustino, A. Awitdrus, R. Farma, and R. Taslim. 2021. The synthesis of carbon nanofiber derived from pineapple leaf fibers as a carbon electrode for supercapacitor application. J Electrochem Energy Convers Storage 18 (3):031004-1-031004–8. doi:10.1115/1.4048405.
  • Taer, E., R. Handayani, A. Apriwandi, R. Taslim, A. Awitdrus, A. Amun, A. Agustino, and I. Iwantono. 2019. The Synthesis of bridging carbon particles with carbon nanotubes from areca catechu husk waste as supercapacitor electrodes. Int J Electrochem Sci 14:9436–48. doi:10.20964/2019.10.34.
  • Taer, E., K. Natalia, A. Apriwandi, R. Taslim, A. Agustino, and R. Farma. 2020. The synthesis of activated carbon nanofiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors. Adv Nat Sci Nanosci Nanotechnol 11 (2):25007-1-25007–7. doi:10.1088/2043-6254/ab8b60.
  • Vandana, M., H. Vijeth, S. P. Ashokkumar, and H. Devendrappa. 2020. Effect of different gel electrolytes on conjugated polymer - graphene quantum dots based electrode for solid state hybrid supercapacitors. Polym Technol Mater 1–8. doi:10.1080/25740881.2020.1784221.
  • Wang, H., H. Niu, W. Hongjie, W. Wang, X. Jin, W. Hongxia, H. Zhou, and T. Lin. 2021b. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. Journal of Power Sources 482 (August 2020):228986. doi:10.1016/j.jpowsour.2020.228986.
  • Wang, A., K. Sun, R. Xu, Y. Sun, and J. Jiang. 2021a. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production 283:125385. doi:10.1016/j.jclepro.2020.125385.
  • Wang, J., X. Zhang, Z. Li, Y. Ma, and L. Ma. 2020. Recent progress of biomass-derived carbon materials for supercapacitors. Journal of Power Sources 451 (October 2019):227794. doi:10.1016/j.jpowsour.2020.227794.
  • Wu, X. L., and A. W. Xu. 2014. Carbonaceous hydrogels and aerogels for supercapacitors. J Mater Chem A 2 (14):4852–64. doi:10.1039/c3ta13929h.
  • Yadav, N., R. Promila, and S. A. Hashmi. 2020. Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors. Sustain Energy Fuels 4 (4):1730–46. doi:10.1039/c9se00812h.
  • Yang, L., Y. Feng, M. Cao, and J. Yao. 2019. Two-step preparation of hierarchical porous carbon from KOH-activated wood sawdust for supercapacitor. Materials Chemistry and Physics 238 (May):121956. doi:10.1016/j.matchemphys.2019.121956.
  • Yetri, Y., A. T. Hoang, D. D. Mursida, T. E. Muldarisnur, and M. Q. Chau. 2020a. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A Recover Util Environ Eff:1–15. doi:10.1080/15567036.2020.1811433.
  • Yetri, Y., D. D. Mursida, E. Taer, and M. Agustino. 2020b. Identification of cacao peels potential as a basic of electrodes environmental friendly supercapacitors. Key Engineering Materials 846:274–81. 10.4028/15567036.2020 https://www.scientific.net/KEM.846.274.
  • Yu, M., J. Li, and L. Wang. 2017. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem Eng J 310:300–06. doi:10.1016/j.cej.2016.10.121.
  • Yuan, S., X. Huang, H. Wang, L. Xie, J. Cheng, Q. Kong, G. Sun, and C. M. Chen. 2020. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance. J Energy Chem 51:396–404. doi:10.1016/j.jechem.2020.04.004.
  • Zhang, G. Q., and S. T. Zhang. 2009. Characterization and electrochemical applications of a carbon with high density of surface functional groups produced from beer yeast. Journal of Solid State Electrochemistry: Current Research and Development in Science and Technology 13 (6):887–93. doi:10.1007/s10008-008-0623-2.
  • Zhao, J., H. Lai, Z. Lyu, Y. Jiang, K. Xie, X. Wang, Q. Wu, L. Yang, Z. Jin, Y. Ma, et al. 2015. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Advanced Materials (Deerfield Beach, Fla.) 27 (23):3541–45. doi:10.1002/adma.201500945.
  • Zhu, X., S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, et al. 2018. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science 181:36–45. doi:10.1016/j.ces.2018.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.