104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An insight on deformation of pressurized heavy water reactor coolant channel at extreme temperature in an oxidizing environment

ORCID Icon, , &
Pages 3709-3728 | Received 26 Oct 2021, Accepted 04 Apr 2022, Published online: 03 May 2022

References

  • Ansys® Academic Research Mechanical. 2016. Workbench Mechanical APDL. ANSYS Inc.
  • Baek, J. H., and Y. H. Jeong. 2008. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. Journal of Nuclear Materials 372 (2–3):152–59. doi:10.1016/j.jnucmat.2007.02.011.
  • Bajaj, S. S., and A. R. Gore. 2006. The Indian PHWR. Nuclear Engineering and Design 236 (7–8):701–22. doi:10.1016/j.nucengdes.2005.09.028.
  • Baker, J., and L. C. Just. 1962. Studies of metal-water reactions at high temperatures III. In Experimental and theoretical studies of the zirconium-water reaction (no. anl-6548). argonne national lab, Argonne, IL (United States): (ANL). doi:10.2172/4781681.
  • Banerjee, S., and H. P. Gupta. 2017. Development of technologies and safety systems for pressurized heavy water reactors in India. The Journal of Nuclear Engineering and Radiation Science 3:1–13. doi:10.1115/1.4035435.
  • Banerjee, S., T. K. Sawarn, V. D. Alur, B. N. Rath, S. Kaity, K. M. Pandit, S. Anantharaman, and D. N. Sah. 2013. High temperature steam oxidation study on Zr-2.5%Nb pressure tube under simulated LOCA condition. Journal of Nuclear Materials 439 (1–3):258–67. doi:10.1016/j.jnucmat.2012.09.027.
  • Cathcart, J. V., R. E. Pawel, R. A. McKee, R. E. Druschel, G. J. Yurek, J. J. Campbell, and S. H. Jury. 1977. Zirconium metal-water oxidation kinetics IV, In Reaction rate studies (No. ORNL/NUREG–17). United States: Oak Ridge National Lab. https://doi.org/10.2172/7317596.
  • Dutt, N., and P. K. Sahoo. 2018. Experimental and numerical study of phwr specific suspended debris. Nuclear Engineering and Design 330:344–55. doi:10.1016/j.nucengdes.2018.02.013.
  • Dutt, N., A. R. Singh, and P. K. Sahoo. 2020. CFD analysis of suspended debris during postulated severe core damage accident of PHWR. Nuclear Engineering and Design 357:110390. doi:10.1016/j.nucengdes.2019.110390.
  • Grosse, M. 2012. High-temperature oxidation in nuclear reactor systems. In nuclear corrosion science and engineering, woodhead publishing series in energy, ed. D. Féron, 265–300. United Kingdom: Woodhead Publishing. doi:10.1533/9780857095343.3.265.
  • IAEA. 2008. Analysis of severe accidents in pressurized heavy water reactors. Vienna, Austria: IAEA Safety Standards Series. International Atomic Energy Agency. No. IAEA-TECDOC-1594
  • IAEA. 2011. Mitigation of hydrogen hazards in severe accidents in nuclear power plants. Vienna: IAEA. No. IAEA-TECDOC-1661
  • IAEA. 2020. Modelling of fuel behavior in design basis accidents and design extension conditions (safety fundamentals, safety requirements and safety guides no. Vienna: IAEA Safety Standards Series. International Atomic Energy Agency. IAEA-TECDOC-1913)
  • Kim, H. T., B. W. Rhee, and J. H. Park. 2007. Application of a zircaloy/steam oxidation model to a CFD code and its validation against a CANDU fuel channel experiment: CS28-2. Journal of Nuclear Science and Technology 44 (11):1385–94. doi:10.1080/18811248.2007.9711386.
  • Leistikow, S., and G. Schanz. 1987. Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions. Nuclear Engineering and Design 103 (1):65–84. doi:10.1016/0029-5493(87)90286-X.
  • Majumdar, P., B. Chatterjee, H. G. Lele, G. Guillard, and F. Fichot. 2014. ASTEC adaptation for PHWR limited core damage accident analysis. Nuclear Engineering and Design 272:273–86. doi:10.1016/j.nucengdes.2013.10.011.
  • Mathew, P. M., W. C. H. Kupferschmidt, V. G. Snell, and M. Bonechi, 2001. CANDU-specific severe core damage accident experiments in support of level 2 PSA, in: Transactions SMiRT 16. Presented at the International Conference on Structural Mechanics in Reactor Technology (SMiRT 16), Washington DC, USA, pp. 1–8.
  • Mathew, P. M., A. J. White, V. G. Snell, and M. Bonechi, 2003. Severe core damage experiments and analysis for candu applications, in: Transactions SMiRT 17. Presented at the International Conference on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, Czech Republic, pp. 1–8.
  • Nandan, G., P. K. Sahoo, R. Kumar, B. Chatterjee, D. Mukhopadhyay, and H. G. Lele. 2010. Experimental investigation of sagging of a completely voided pressure tube of Indian PHWR under heatup condition. Nuclear Engineering and Design 240 (10):3504–12. doi:10.1016/j.nucengdes.2010.05.042.
  • Nayak, A. K., and S. Banerjee. 2017. Pressurised heavy water reactor technology: its relevance today. Journal of Nuclear Engineering and Radiation Science 3 (2):1–9. doi:10.1115/1.4035856.
  • Negi, S., R. Kumar, P. Majumdar, and D. Mukhopadhyay. 2017. Full length channel pressure tube sagging study under postulated LOCA with un-availability of ECCS in an Indian PHWR. Nuclear Engineering and Design 320:361–73. doi:10.1016/j.nucengdes.2017.06.017.
  • Nitheanandan, T., X. Cao, J.-H. Choi, D. Dupleac, D.-H. Kim, H. G. Lele, A. K. Nayak, and H. P. Rammohan. 2017. Benchmarking severe accident computer codes for heavy water reactor applications. Journal of Nuclear Engineering and Radiation Science 3 (2):020903. doi:10.1115/1.4035726.
  • Prater, J. T., and E. L. Courtright, 1987. Oxidation of Zircaloy-4 in steam at 1300 to 2400 ° C, in: Zirconium In The Nuclear Industry: Seventh Symposium, France. pp. 489–503.
  • Sahoo, P. K., and A. Singh, 2018. Development of experimental facility to study channel disassembly behaviour for indian phw reactor during heatup, in: ASME Proceedings | Thermal-Hydraulics and Safety Analyses. Presented at the 26th International Conference on Nuclear Engineering, ASME, London, England, p. V06AT08A029. 10.1115/ICONE26-81312
  • Sethumadhavan, V., S. M. Sathe, S. Kumar, K. B. Khan, and D. N. Sah. 1997. High temperature steam oxidation of zircaloy-2 cladding of PHWR fuel element. India: Bhabha Atomic Research Centre. ( No. BARC–1997/E/016)
  • Sharma, M., R. Kumar, P. Majumdar, and D. Mukhopadhyay. 2018. Effect of eccentricity of pressure tube on circumferential temperature distribution of PHWR fuel bundle under postulated accident condition. Nuclear Engineering and Design 331:274–81. doi:10.1016/j.nucengdes.2018.03.008.
  • Singh, R. J., K. Ravi, and S. K. Gupta. 2011. Methodology for developing channel disassembly criteria under severe accident conditions for PHWRs. Annals of Nuclear Energy 38 (9):1884–90. doi:10.1016/j.anucene.2011.05.011.
  • Singh, A. R., and P. K. Sahoo. 2018. Investigation of the channel disassembly behaviour of Indian 200MWe PHWR – A numerical approach. Nuclear Engineering and Design 339:137–49. doi:10.1016/j.nucengdes.2018.09.008.
  • Singh, A. R., and A. Tariq. 2021. Transient channel sagging measurements under severe thermal loading condition: an optical imaging approach. The Journal of Thermal Science and Engineering Applications 14:1–24. doi:10.1115/1.4051451.
  • Singh, A. R., A. Tariq, and P. Majumdar. 2020. Experimental study on thermo-mechanical deformation of PHWR channel at elevated temperature. Nuclear Engineering and Design 364:110634. doi:10.1016/j.nucengdes.2020.110634.
  • Singh, A. R., A. Tariq, P. Majumdar, and D. Mukhopadhyay. 2021a. Experimental study on thermally assisted sagging deflection and interaction of multiple coolant channels. Nuclear Engineering and Design 384:111466. doi:10.1016/j.nucengdes.2021.111466.
  • Singh, A. R., A. Tariq, P. Majumdar, and D. Mukhopadhyay. 2022. Effect of heat-up and oxidation on the PHWR channel under severe accident scenario-an experimental study. International Journal of Pressure Vessels and Piping 197:104652. doi:10.1016/j.ijpvp.2022.104652.
  • Singh, A. R., A. Tariq, P. K. Sahoo, P. Majumdar, and D. Mukhopadhyay. 2021b. Longitudinal deformation study of pressure tube of Indian PHWR under high temperature transient. Annals of Nuclear Energy 155:108160. doi:10.1016/j.anucene.2021.108160.
  • Urbanic, V. F., and T. R. Heidrick. 1978. High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam. Journal of Nuclear Materials 75 (2):251–61. doi:10.1016/0022-3115(78)90006-5.
  • Yadav, A. K., R. Kumar, A. Gupta, B. Chatterjee, P. Majumdar, and D. Mukhopadhyay. 2013. Thermomechanical behavior of pressure tube under small break loss of coolant accident for PHWR. Journal of Pressure Vessel Technology 135 (4):041601–041601. doi:10.1115/1.4024580.
  • Zhou, F., D. R. Novog, L. J. Siefken, and C. M. Allison. 2018. Development and benchmarking of mechanistic channel deformation models in RELAP/SCDAPSIM/MOD3.6 for CANDU severe accident analysis. Nuclear Science and Engineering 190 (3):209–37. doi:10.1080/00295639.2018.1442060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.