128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Real-Time testing of novel robust digital pitch controller for digital hydraulic pitch system in wind turbine

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3477-3496 | Received 02 Dec 2021, Accepted 06 Apr 2022, Published online: 26 Apr 2022

References

  • Abdelbaky, M. A., X. Liu, and D. Jiang. 2020. Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines. Renewable Energy 145:981–96. doi:10.1016/j.renene.2019.05.074.
  • Alshehri, J., A. Alzahrani, and M. Khalid (2019, May). Wind energy conversion systems and artificial neural networks: Role and applications. In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China. (pp. 1777–82). IEEE. doi: 10.1109/ISGT-Asia.2019.8881404.
  • Apata, O., and D. T. O. Oyedokun. 2020. An overview of control techniques for wind turbine systems. Scientific African 10:e00566. doi:10.1016/j.sciaf.2020.e00566.
  • Asmussen, M. F., H. C. Pedersen, L. Lilleengen, A. Larsen, and T. Farsakoglou. 2019, October. Investigating fault detection and diagnosis in a hydraulic pitch system using a state augmented EKF-approach. In Fluid Power Systems Technology, Vol. 59339., V001T01A030. Florida, USA.: American Society of Mechanical Engineers. doi:10.1115/FPMC2019-1667.
  • Ayala, H. V. H., and L. Dos Santos Coelho. 2016. Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks. Mechanical Systems and Signal Processing 68:378–93. doi:10.1016/j.ymssp.2015.05.022.
  • Boukhezzar, B., and H. Siguerdidjane. 2010. Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Transactions on Energy Conversion 26 (1):149–62. doi:10.1109/TEC.2010.2090155.
  • Casaburo, A., G. Petrone, F. Franco, and S. De Rosa. 2019. A review of similitude methods for structural engineering. Applied Mechanics Reviews 71 (3). doi: 10.1115/1.4043787.
  • Chehouri, A., R. Younes, A. Ilinca, and J. Perron. 2015. Review of performance optimization techniques applied to wind turbines. Applied Energy 142:361–88. doi:10.1016/j.apenergy.2014.12.043.
  • Council, G. W. E. 2021. GWEC|. GLOBAL WIND REPORT 2021.
  • El-Baklish, S. K., A. A. El-Badawy, G. Frison, and M. Diehl. 2020. Nonlinear model predictive pitch control of aero-elastic wind turbine blades. Renewable Energy 161:777–91. doi:10.1016/j.renene.2020.07.094.
  • Gao, J., and F. Wu. 2019. Investigation of flow through the two-stage orifice. Engineering Applications of Computational Fluid Mechanics 13 (1):117–27. doi:10.1080/19942060.2018.1561517.
  • Goupee, A. J., R. W. Kimball, and H. J. Dagher. 2017. Experimental observations of active blade pitch and generator control influence on floating wind turbine response. Renewable Energy 104:9–19. doi:10.1016/j.renene.2016.11.062.
  • Hassan, H. M., A. L. ElShafei, W. A. Farag, and M. S. Saad. 2012. A robust LMI-based pitch controller for large wind turbines. Renewable Energy 44:63–71. doi:10.1016/j.renene.2011.12.016.
  • International Energy Agency. (2020). World energy outlook.
  • Jia, C., L. Wang, E. Meng, L. Chen, Z. Liu, W. Jia, Z. Liu, and Z. Liu. 2021. Combining LIDAR and LADRC for intelligent pitch control of wind turbines. Renewable Energy 169:1091–105. doi:10.1016/j.renene.2021.01.065.
  • Jonkman, J., S. Butterfield, W. Musial, and G. Scott.2009. Definition of a 5-MW reference wind turbine for offshore system development. No. NREL/TP-500-38060, NREL. Golden. CO (United States). 10.2172/947422
  • Karad, S., and R. Thakur. 2021. Recent trends of control strategies for doubly fed induction generator based wind turbine systems: A comparative review. Archives of Computational Methods in Engineering 28 (1):15–29. doi:10.1007/s11831-019-09367-3.
  • Lasheen, A., and A. L. Elshafei. 2016. Wind-turbine collective-pitch control via a fuzzy predictive algorithm. Renewable Energy 87:298–306. doi:10.1016/j.renene.2015.10.030.
  • Marugán, A. P., F. P. G. Márquez, J. M. P. Perez, and D. Ruiz-Hernández. 2018. A survey of artificial neural network in wind energy systems. Applied Energy 228:1822–36. doi:10.1016/j.apenergy.2018.07.084.
  • Menezes, E. J. N., A. M. Araújo, and N. S. B. da Silva. 2018. A review on wind turbine control and its associated methods. Journal of Cleaner Production 174:945–53. doi:10.1016/j.jclepro.2017.10.297.
  • Navarrete, E. C., M. T. Perea, J. J. Correa, R. C. Serrano, and G. R. Moreno. 2019. Expert control systems implemented in a pitch control of wind turbine: A review. IEEE Access 7:13241–59. doi:10.1109/ACCESS.2019.2892728.
  • Njiri, J. G., and D. Söffker. 2016. State-of-the-art in wind turbine control: Trends and challenges. Renewable and Sustainable Energy Reviews 60:377–93. doi:10.1016/j.rser.2016.01.110.
  • Padhi, J. R., M. K. Debnath, and S. K. Kar. 2022. Self-tuning Fuzzy-PI controller for load frequency control analysis with the integration of wind energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (1):613–31. doi:10.1080/15567036.2022.2049928.
  • Pedersen, N. H., P. Johansen, and T. O. Andersen. 2018. Optimal control of a wind turbine with digital fluid power transmission. Nonlinear Dynamics 91 (1):591–607. doi:10.1007/s11071-017-3896-0.
  • Qiankun, M., W. Xuyong, Y. Fan, T. Jianfeng, and L. Peng (2016). Research on feed-forward PIDD2 control for hydraulic continuous rotation motor electro-hydraulic servo system with long pipeline. In 2016 UKACC 11th International Conference on Control (CONTROL), Belfast, UK. (pp. 1–6). IEEE. doi: 10.1109/CONTROL.2016.7737533.
  • Sawant, M., S. Thakare, A. P. Rao, A. E. Feijóo-Lorenzo, and N. D. Bokde. 2021. A review on state-of-the-art reviews in wind-turbine-and wind-farm-related topics. Energies 14(8). doi:10.3390/en14082041. 2041.
  • Singh, P., and P. Dwivedi. 2018. Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem. Applied Energy 217:537–49. doi:10.1016/j.apenergy.2018.02.131.
  • Sitharthan, R., K. R. Devabalaji, and A. Jees. 2017. An Levenberg–Marquardt trained feed-forward back-propagation based intelligent pitch angle controller for wind generation system. Renewable Energy Focus 22:24–32. doi:10.1016/j.ref.2017.10.003.
  • Sitharthan, R., and M. Geethanjali. 2017. An adaptive Elman neural network with C-PSO learning algorithm based pitch angle controller for DFIG based WECS. Journal of Vibration and Control 23 (5):716–30. doi:10.1177/1077546315585038.
  • Van, T. L., T. H. Nguyen, and D. C. Lee. 2015. Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems. IEEE Transactions on Energy Conversion 30 (2):578–87. doi:10.1109/TEC.2014.2379293.
  • Venkaiah, P., and B. K. Sarkar. 2020. Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller. Renewable Energy 147:55–68. doi:10.1016/j.renene.2019.08.127.
  • Wang, F., J. Chen, B. Xu, and K. A. Stelson. 2019. Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain. Applied Energy 251:113309. doi:10.1016/j.apenergy.2019.113309.
  • Wang, C. S., and M. H. Chiang. 2016. A novel pitch control system of a large wind turbine using two-degree-of-freedom motion control with feedback linearization control. Energies 9 (10):791. doi:10.3390/en9100791.
  • Yin, X. X., Y. G. Lin, and W. Li. 2014. Control and model identification of an electro-hydraulic digital pitch system. Journal of ZheJiang University (Engineering Science) 48 (5):777–83. doi:10.3785/j.1008-973X.2014.05.004.
  • Yin, X. X., Y. G. Lin, and W. Li. 2016. Predictive pitch control of an electro-hydraulic digital pitch system for wind turbines based on the extreme learning machine. Transactions of the Institute of Measurement and Control 38 (11):1392–400. doi:10.1177/0142331215589610.
  • Yin, X. X., Y. G. Lin, W. Li, and Y. J. Gu. 2014. Integrated pitch control for wind turbine based on a novel pitch control system. Journal of Renewable and Sustainable Energy 6 (4):043106. doi:10.1063/1.4890566.
  • Yin, X. X., Y. G. Lin, W. Li, Y. J. Gu, X. J. Wang, and P. F. Lei. 2015. Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renewable Energy 81:599–608. doi:10.1016/j.renene.2015.03.042.
  • Yin, X., W. Zhang, Z. Jiang, and L. Pan. 2019. Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine. Mechanical Systems and Signal Processing 133:105704. doi:10.1016/j.ymssp.2018.09.026.
  • Yuan, Y., and J. Tang. 2017. Adaptive pitch control of wind turbine for load mitigation under structural uncertainties. Renewable Energy 105:483–94. doi:10.1016/j.renene.2016.12.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.