132
Views
0
CrossRef citations to date
0
Altmetric
Review

Gaseous detonation in different structural ducts

ORCID Icon, , , , &
Pages 3597-3609 | Received 29 Aug 2019, Accepted 07 Apr 2022, Published online: 26 Apr 2022

References

  • Arienti, M., and J. E. Shepherd. 2005. A numerical study of detonation diffraction. Journal of Fluid Mechanics 529:117–46. doi:10.1017/S0022112005003319.
  • Bartlmä, F., and K. Schröder. 1986. The diffraction of a plane detonation wave at a convex corner. Combustion and Flame 66 (3):237–48. doi:10.1016/0010-2180(86)90137-9.
  • Bhattacharjee, R. R., S. S. M. Lau-Chapdelaine, G. Maines, L. Maley, and M. I. Radulescu. 2013. Detonation re-initiation mechanism following the mach reflection of a quenched detonation. Proceedings of the Combustion Institute 34 (2):1893–901. doi:10.1016/j.proci.2012.07.063.
  • Bjerketvedt, D., J. R. Bakke, and K. van Wingerden. 1997. Gas explosion handbook. Journal of Hazardous Materials 52(1):1–150. doi:10.1016/S0304-3894(97)81620-2.
  • Blanchard, R., D. Arndt, R. Grätz, M. Poli, and S. Scheider. 2010. Explosions in closed pipes containing baffles and 90 degree bends. Journal of Loss Prevention in the Process Industries 23 (2):253–59. doi:10.1016/j.jlp.2009.09.004.
  • Cao, Y., M. Dahari, I. Tlili, and A. Raise. 2020. Investigation on the laminar flame speed of CH4/CO2/air mixture at atmospheric and high pressures using schlieren photography. International Journal of Hydrogen Energy 45 (55):31151–61. doi:10.1016/j.ijhydene.2020.08.061.
  • Cao, W., D. Gao, H. D. Ng, and J. H. S. Lee. 2019. Experimental investigation of near-limit gaseous detonations in small diameter spiral tubing. Proceedings of the Combustion Institute 37 (3):3555–63. doi:10.1016/j.proci.2018.08.027.
  • Chao, J., H. D. Ng, and J. H. S. Lee. 2009. Detonability limits in thin annular channels. Proceedings of the Combustion Institute 32 (2):2349–54. doi:10.1016/j.proci.2008.05.090.
  • Ciccarelli, G., and S. Dorofeev. 2008. Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science 34 (4):499–550. doi:10.1016/j.pecs.2007.11.002.
  • Ciccarelli, G., C. T. Johansen, and M. Parravani. 2010. The role of shock–flame interactions on flame acceleration in an obstacle laden channel. Combustion and Flame 157 (11):2125–36. doi:10.1016/j.combustflame.2010.05.003.
  • Davis, S., Merilo, E., Ziemba, A., Pinto, M., Wingerden, K. V., et al. 2017. Large scale detonation testing: New findings in the prediction of DDTs at large scales. Journal of Loss Prevention in the Process Industries 48:345–57. doi:10.1016/j.jlp.2017.04.028.
  • Dionne, J., H. Dick Ng, and J. H. S. Lee. 2000. Transient development of friction-induced low-velocity detonations. Proceedings of the Combustion Institute 28 (1):645–51. doi:10.1016/s0082-0784(00)80265-9.
  • Fay. 1959. Two-dimensional gaseous detonations: Velocity deficit. Physics of Fluids 2 (3):283–89. doi:10.1063/1.1705924.
  • Gallier, S., F. Le Palud, F. Pintgen, R. Mével, and J. E. Shepherd. 2017. Detonation wave diffraction in H2–O2–ar mixtures. Proceedings of the Combustion Institute 36 (2):2781–89. doi:10.1016/j.proci.2016.06.090.
  • Gamezo, V. N., C. L. Bachman, and E. S. Oran, 2020. Flame acceleration and DDT in large-scale obstructed channels filled with methane-air mixtures. Proceedings of the Combustion Institute 38:3521–3528. doi:10.1016/j.proci.2020.09.018.
  • Gao, Y., J. H. S. Lee, and H. D. Ng. 2014. Velocity fluctuation near the detonation limits. Combustion and Flame 161 (11):2982–90. doi:10.1016/j.combustflame.2014.04.020.
  • Gao, K., S. N. Li, R. Han, R. Z. Li, and Z. Y. Liu. 2020. Study on the propagation law of gas explosion in the space based on the goaf characteristic of coal mine. Safety Ence 127:104693. doi:10.1016/j.ssci.2020.104693.
  • Gao, Y., B. Zhang, H. D. Ng, and J. H. S. Lee. 2016. An experimental investigation of detonation limits in hydrogen–oxygen–argon mixtures. International Journal of Hydrogen Energy 41 (14):6076–83. doi:10.1016/j.ijhydene.2016.02.130.
  • Geikie, M. K., C. J. Rising, A. J. Morales, and K. A. Ahmed. 2021. Turbulent flame-vortex dynamics of bluff-body premixed flames. Combustion and Flame 223:28–41. doi:10.1016/j.combustflame.2020.09.023.
  • Goodwin, G. B., R. W. Houim, and E. S. Oran. 2017. Shock transition to detonation in channels with obstacles. Proceedings of the Combustion Institute 36 (2):2717–24. doi:10.1016/j.proci.2016.06.160.
  • Guo, C., C. Wang, S. Xu, and H. Zhang. 2007. Cellular pattern evolution in gaseous detonation diffraction in a 90°-branched channel. Combustion and Flame 148 (3):89–99. doi:10.1016/j.combustflame.2006.11.001.
  • Han, W., Y. Gao, and C. K. Law. 2017. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: An integrated mechanistic study. Combustion and Flame 176:285–98. doi:10.1016/j.combustflame.2016.10.010.
  • Heidari, A., and J. Wen. 2017. Numerical simulation of detonation failure and re-initiation in bifurcated tubes. International Journal of Hydrogen Energy 42 (11):7353–59. doi:10.1016/j.ijhydene.2016.08.174.
  • Honhar, P., C. R. Kaplan, R. W. Houim, and E. S. Oran. 2020. Role of reactivity gradients in the survival, decay and reignition of methane-air detonations in large channels. Combustion and Flame 222:152–69. doi:10.1016/j.combustflame.2020.08.034.
  • Ishii, K., K. Itoh, and T. Tsuboi. 2002. A study on velocity deficits of detonation waves in narrow gaps. Proceedings of the Combustion Institute 29 (2):2789–94. doi:10.1016/s1540-7489(02)80340-6.
  • Ishii, K., and M. Monwar. 2011. Detonation propagation with velocity deficits in narrow channels. Proceedings of the Combustion Institute 33 (2):2359–66. doi:10.1016/j.proci.2010.07.051.
  • Knystautas, R., J. H. Lee, I. Moen, and H. G. Wagner. 1979. Direct initiation of spherical detonation by a hot turbulent gas jet. Symposium (International) on Combustion 17 (1):1235–45. doi:10.1016/s0082-0784(79)80117-4.
  • Lee, J. H. S. 2008. The detonation phenomenon. New York: Cambridge University Press 388:9780511754708. doi:10.1017/CBO9780511754708 .
  • Lee, J. H., R. Knystautas, and N. Yoshikawa. 1978. Photochemical initiation of gaseous detonations. Acta Astronautica 5 (11–12):971–82. doi:10.1016/0094-5765(78)90003-6.
  • Li, L., Li, J. M., Nguyen, V. B., Teo, C. J., Chang, P. H., Khoo, B. C., et al. 2017. A study of detonation re-initiation through multiple reflections in a 90-degree bifurcation channel. Combustion and Flame 180:207–16. doi:10.1016/j.combustflame.2017.03.004.
  • Li, J., H. Ren, and J. Ning. 2013. Numerical application of additive runge-kutta methods on detonation interaction with pipe bends. International Journal of Hydrogen Energy 38 (21):9016–27. doi:10.1016/j.ijhydene.2013.04.126.
  • Li, X., Zhou, N., Chen, B., Xu, Y., Li, X., Huang, w., Yuan, X., Liu, X., et al. 2021. The effects of pipe length on gas cloud explosion characteristics in the contraction pipe. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: doi:10.1080/15567036.2021.1971339.
  • Luo, C., J. Zanganeh, and B. Moghtaderi. 2016. A 3D numerical study of detonation wave propagation in various angled bending tubes. Fire Safety Journal 86:53–64. doi:10.1016/j.firesaf.2016.10.002.
  • Malekan, M., A. Khosravi, and C. A. Cimini. 2019. Deformation and fracture of cylindrical tubes under detonation loading: A review of numerical and experimental analyses. International Journal of Pressure Vessels and Piping 173:114–32. doi:10.1016/j.ijpvp.2019.05.003.
  • Melguizo-Gavilanes, J., V. Rodriguez, P. Vidal, and R. Zitoun. 2021. Dynamics of detonation transmission and propagation in a curved chamber: A numerical and experimental analysis. Combustion and Flame 223:460–73. doi:10.1016/j.combustflame.2020.09.032.
  • Mosavati, B., M. Mosavati, and F. Kowsary. 2016. Inverse boundary design solution in a combined radiating-free convecting furnace filled with participating medium containing specularly reflecting walls. International Communications in Heat and Mass Transfer 76:69–76. doi:10.1016/j.icheatmasstransfer.2016.04.029.
  • National Fire Protection Association. 2019. Guide on explosion protection for gaseous mixtures in pipe systems, 67. USA: NFPA.
  • Pusch, W., and H. G. Wagner. 1962. Investigation of the dependence of the limits of detonatability on tube diameter. Combustion and Flame 6:157–62. doi:10.1016/0010-2180(62)90085-8.
  • Sow, A., A. Chinnayya, and A. Hadjadj. 2019. On the viscous boundary layer of weakly unstable detonations in narrow channels. Computers & Fluids 179:449–58. doi:10.1016/j.compfluid.2018.11.006.
  • Starr, A., J. H. S. Lee, and H. D. Ng. 2015. Detonation limits in rough walled tubes. Proceedings of the Combustion Institute 35 (2):1989–96. doi:10.1016/j.proci.2014.06.130.
  • Thomas, G. O., and R. L. Williams. 2002. Detonation interaction with wedges and bends. Shock Waves 11 (6):481–92. doi:10.1007/s001930200133.
  • Valiev, D. M., V. Bychkov, V. Akkerman, and L. E. Eriksson. 2009. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 80 (3):036317. doi:10.1103/PhysRevE.80.036317.
  • Wang, C., W. Han, J. Ning, and Y. Yang. 2012. High resolution numerical simulation of methane explosion in bend ducts. Safety Science 50 (4):709–17. doi:10.1016/j.ssci.2011.08.047.
  • Wang, L., H. Ma, and Z. Shen. 2020. Detonation propagation over a wedge with two channels in a duct. Process Safety and Environmental Protection 133:387–93. doi:10.1016/j.psep.2019.11.009.
  • Xiao, H., and E. S. Oran. 2020. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes. Combustion and Flame 220:378–93. doi:10.1016/j.combustflame.2020.07.013.
  • Xiao, H., J. Sun, and X. He. 2018. A study on the dynamic behavior of premixed propane-air flames propagating in a curved combustion chamber. Fuel 228:342–48. doi:10.1016/j.fuel.2018.04.165.
  • Xu, H., Mi, X., CB Kiyanda, Ng, H. D., Yao, C., et al. 2019. The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations. Proceedings of the Combustion Institute 37 (3):3545–53. doi:10.1016/j.proci.2018.05.133.
  • Yuan, X., J. Zhou, S. Liu, and Z. Lin. 2020. Diffraction of cellular detonation wave over a cylindrical convex wall. Acta Astronautica 169:94–107. doi:10.1016/j.actaastro.2019.12.039.
  • Zhang, B. 2016. The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combustion and Flame 169:333–39. doi:10.1016/j.combustflame.2016.05.003.
  • Zhang, B., H. D. Ng, R. Mével, and J. H. S. Lee. 2011. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures. International Journal of Hydrogen Energy 36 (9):5707–16. doi:10.1016/j.ijhydene.2011.01.175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.