217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Machine learning approach for categorical biomass higher heating value prediction based on proximate analysis

ORCID Icon &
Pages 3381-3394 | Received 13 Dec 2021, Accepted 04 Apr 2022, Published online: 17 Apr 2022

References

  • Breiman, L. 2001. Random Forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Ceylan, Z., E. Pekel, S. Ceylan, and S. Bulkan. 2018. Biomass higher heating value prediction analysis by ANFIS, PSO-ANFIS and GA-ANFIS. Global NEST Journal 20:589–97. doi:10.30955/gnj.002772.
  • Chen, W.-H., S. Nižetić, R. Sirohi, Z. Huang, R. Luque, M. P. Agis, R. Sakthivel, X. Phuong Nguyen, and A. Tuan Hoang. 2022. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology 344:126207. doi:10.1016/j.biortech.2021.126207.
  • Dashti, A., A. Sajadi Noushabadi, M. Raji, A. Razmi, S. Ceylan, and A. H. Mohammadi. 2019. Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel 257:115931. doi:10.1016/j.fuel.2019.115931.
  • Florin, P., R. Mahu, I. V. Ion, and E. Rusu. 2020. A mathematical model of biomass combustion physical and chemical processes. Energies 13 (23):6232. doi:10.3390/en13236232.
  • Frank, E., M. A. Hall, and I. H. Witten. 2017. The WEKA workbench. Data Mining 553–71. doi:10.1016/b978-0-12-804291-5.00024-6.
  • García, R., C. Pizarro, A. G. Lavín, and J. L. Bueno. 2014. Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel 117:1139–47. doi:10.1016/j.fuel.2013.08.049.
  • Gunn, S. R. 1998. Support vector machines for classification and regression. ISIS Technical Report 14:5–16.
  • Hosseinpour, S., M. Aghbashlo, M. Tabatabaei, and M. Mehrpooya. 2017. Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS). Energy 138:473–79. doi:10.1016/j.energy.2017.07.075.
  • Karkevandi-Talkhooncheh, A., A. Rostami, A. Hemmati-Sarapardeh, M. Ahmadi, M. M. Husein, and B. Dabir. 2018. Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques. Fuel 220:270–82. doi:10.1016/j.fuel.2018.01.101.
  • Kazemi Shariat Panahi, H., M. Dehhaghi, J. E. Kinder, and T. C. Ezeji. 2019. A review on green liquid fuels for the transportation sector: A prospect of microbial solutions to climate change. Biofuel Research Journal 23 (3):995–1024. doi:10.18331/BRJ2019.6.1.2.
  • Kuan Xing, J., K. Luo, H. Wang, Z. Gao, and J. Fan. 2019. A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 188:116077. doi:10.1016/j.energy.2019.116077.
  • Lal, S., J. Herbert, P. Arjunan, and A. Suryan. 2022. Advancements in renewable energy transition in India: A review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2021.2024921.
  • Mahdaviara, M., A. Rostami, F. Keivanimehr, and K. Shahbazi. 2021. Accurate determination of permeability in carbonate reservoirs using Gaussian process regression. Journal of Petroleum Science and Engineering 196:920–4105. doi:10.1016/j.petrol.2020.107807.
  • Mahdaviara, M., A. Rostami, and K. Shahbazi. 2020. State-of-the-art modeling permeability of the heterogeneous carbonate oil reservoirs using robust computational approaches. Fuel 268:16–2361. doi:10.1016/j.fuel.2020.117389.
  • Mutlu, A. Y., and O. Yucel. 2018. An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification. Energy 165:895–901. doi:10.1016/j.energy.2018.09.131.
  • Olatunji, O., S. Akinlabi, and N. Madushele. 2020. Application of artificial intelligence in the prediction of thermal properties of biomass. In Valorization of biomass to value-added commodities. Green energy and technology, edited by M. Daramola and A. Ayeni. Springer International Publishing. doi:10.1007/978-3-030-38032-8_4.
  • Pattanayak, S., C. Loha, L. Hauchhum and Sailo, L. 2021. Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass Conversion and Biorefinery 11 (6):2499–508. doi:10.1007/s13399-020-00685-2.
  • Perera, S. M. H. D., C. Wickramasinghe, B. K. T. Samarasiri, and M. Narayana. 2021. Modeling of thermochemical conversion of waste biomass – A comprehensive review. Biofuel Research Journal 32 (4):1481–528. doi:10.18331/BRJ2021.8.4.3.
  • Rostami, A., and A. Baghban. 2018. Application of a supervised learning machine for accurate prognostication of higher heating values of solid wastes. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 40 (5):558–64. doi:10.1080/15567036.2017.1360967.
  • Rostami, A., A. Hemmati-Sarapardeh, and S. Shamshirband. 2018. Rigorous prognostication of natural gas viscosity: Smart modeling and comparative study. Fuel 222:766–78. doi:10.1016/j.fuel.2018.02.069.
  • Shengbo, G., P. Nai Yuh Yek, Y. Wang Cheng, C. Xia, W. Adibah Wan Mahari, R. Keey Liew, W. Peng, T.-Q. Yuan, Tabatabaei, M., Aghbashlo, M. and Sonne, C. 2021. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renewable and Sustainable Energy Reviews 135:1364–0321.
  • Sourav Ghosh, G. R. R. and T. Thomas. 2021. Machine learning-based prediction of supercapacitor performance for a novel electrode material: Cerium oxynitride. Energy Storage Materials 40:426–38. doi:10.1016/j.ensm.2021.05.024.
  • Tuan Hoang, A., I. M. R. F. Hwai Chyuan Ong, C. Tung Chong, R. S. Chin Kui Cheng, and O. Yong Sik. 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Tursi, A. 2019. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal 22 (2):962–97910. doi:10.18331/BRJ2019.6.2.3.
  • Uzun, H., Z. Yıldız, J. L. Goldfarb, and S. Ceylan. 2017. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis. Bioresource Technology 234: 0960-8524: 122–30. doi:10.1016/j.biortech.2017.03.015.
  • Vapnik, V. 1998. Statistical learning theory. New York: Wiley.
  • Xing, J. K., K. Luo, H. Pitsch, H. O. Wang, Y. Bai, C. G. Zhao, and J. R. Fan. 2019. Predicting kinetic parameters for coal devolatilization by means of artificial neural networks. Proceedings of the Combustion Institute, 37 (3):2943–50. doi:10.1016/j.proci.2018.05.148.
  • Yates, D., and M. Z. Islam. 2021. Fast forest: Increasing random forest processing speed while maintaining accuracy. Information Sciences 557:130–52. doi:10.1016/j.ins.2020.12.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.