767
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Estimation of wind turbine output power using soft computing models

, , ORCID Icon & ORCID Icon
Pages 3757-3786 | Received 05 Oct 2021, Accepted 07 Apr 2022, Published online: 03 May 2022

References

  • Akbiyik, H., and H. Yavuz. 2021. Artificial neural network application for aerodynamics of an airfoil equipped with plasma actuators. Journal of Applied Fluid Mechanics 14 (4):1165-81. https://doi.org/10.47176/jafm.14.04.32133
  • Arora, I., J. Gambhir, and T. Kaur. 2020. Data normalisation-based solar irradiance forecasting using artificial neural networks. Arabian Journal for Science and Engineering 46 (2):1333–43. doi:10.1007/s13369-020-05140-y.
  • Asghar, A. B., and X. Liu. 2018. Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine. Neurocomputing 272:495–504. doi:10.1016/j.neucom.2017.07.022.
  • Başakın, E. E., Ö. Ekmekcioğlu, H. Çıtakoğlu, and M. Özger. 2021. A new insight to the wind speed forecasting: Robust multi-stage ensemble soft computing approach based on pre-processing uncertainty assessment. Neural Computing and Applications 34 (1):783–812. doi:10.1007/s00521-021-06424-6.
  • Benmouiza, K., and A. Cheknane. 2018. Clustered ANFIS network using Fuzzy C-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theoretical and Applied Climatology 137 (1–2):31–43. doi:10.1007/s00704-018-2576-4.
  • Bilgili, M., and B. Sahin. 2010. Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorology and Atmospheric Physics 109 (1–2):61–72. doi:10.1007/s00703-010-0093-9.
  • Bilgili, M., B. Şahin, and A. Kahraman. 2004. Wind energy potential in Antakya and iskenderun regions, Turkey. Renewable Energy 29 (10):1733–45. doi:10.1016/j.renene.2003.10.003.
  • Bilgili, M., S. Tumse, M. Tontu, and B. Sahin. 2021. Effect of growth in turbine size on rotor aerodynamic performance of modern commercial large-scale wind turbines. Arabian Journal for Science and Engineering 46 (8):7185–95. doi:10.1007/s13369-021-05364-6.
  • Cacciola, M., G. Megali, D. Pellicanó, and F. C. Morabito. 2011. Elman neural networks for characterizing voids in welded strips: A study. Neural Computing and Applications 21 (5):869–75. doi:10.1007/s00521-011-0609-3.
  • Catalao, J. P., H. M. Pousinho, and V. M. Mendes (2011). Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind power Forecasting in Portugal. 2011 IEEE Power and Energy Society General Meeting. 10.1109/pes.2011.6038969
  • Chandra, R., and M. Zhang. 2012. Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86:116–23. doi:10.1016/j.neucom.2012.01.014.
  • Chang, W.-Y. 2014. A literature review of wind forecasting methods. Journal of Power and Energy Engineering 2 (4):161–68. doi:10.4236/jpee.2014.24023.
  • Chen, W.-H., J.-S. Wang, M.-H. Chang, J. K. Mutuku, and A. T. Hoang. 2021. Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi Approach with modified additive method. Energy Conversion and Management 245:114609. doi:10.1016/j.enconman.2021.114609.
  • Chen, M.-R., G.-Q. Zeng, K.-D. Lu, and J. Weng. 2019. A two-layer nonlinear combination method for short-term wind speed prediction based on Elm, Enn, and LSTM. IEEE Internet of Things Journal 6 (4):6997–7010. doi:10.1109/jiot.2019.2913176.
  • Chen, J., G.-Q. Zeng, W. Zhou, W. Du, and K.-D. Lu. 2018. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Energy Conversion and Management 165:681–95. doi:10.1016/j.enconman.2018.03.098.
  • Citakoglu, H. 2021. Comparison of multiple learning artificial intelligence models for estimation of long-term monthly temperatures in Turkey. Arabian Journal of Geosciences 14(20):2131. https://doi.org/10.1007/s12517-021-08484-3
  • Costa, A., A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa. 2008. A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews 12 (6):1725–44. doi:10.1016/j.rser.2007.01.015.
  • Deng, Y.-C., X.-H. Tang, Z.-Y. Zhou, Y. Yang, and F. Niu. 2021. Application of machine learning algorithms in wind power: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–22. doi:10.1080/15567036.2020.1869867.
  • Deshmukh, M. K., and C. B. Moorthy. 2010. Application of genetic algorithm to neural network model for estimation of wind power potential. Journal of Engineering, Science and Management Education 2:50–59.
  • Dong, D., Z. Sheng, and T. Yang (2018). Wind power prediction based on recurrent neural network with long short-term memory units. 2018 International Conference on Renewable Energy and Power Engineering (REPE), Toronto Canada . (pp. 34-38). doi: 10.1109/repe.2018.8657666.
  • Ekanayake, P., A. T. Peiris, J. M. Jayasinghe, and U. Rathnayake. 2021. Development of wind power prediction models for Pawan Danavi wind farm in Sri Lanka. Mathematical Problems in Engineering 2021, 1–13. doi:10.1155/2021/4893713.
  • Elman, J. L. 1990. Finding Structure in Time. Cognitive Science 14 (2):179–211. doi:10.1207/s15516709cog1402_1.
  • Gomes, P., and R. Castro. 2012. Wind speed and wind power forecasting using statistical models: Autoregressive moving average (ARMA) and artificial neural networks (ANN). International Journal of Sustainable Energy Development 1 (2):41–50. doi:10.20533/ijsed.2046.3707.2012.0007.
  • Graves, A., M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. 2009. A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (5):855–68. doi:10.1109/tpami.2008.137.
  • Güzelel, Y. E., U. Olmuş, K. N. Çerçi, and O. Büyükalaca. 2021. Comprehensive modelling of rotary desiccant wheel with different multiple regression and machine learning methods for balanced flow. Applied Thermal Engineering 199:117544. doi:10.1016/j.applthermaleng.2021.117544.
  • Hagan, M. T., H. B. Demuth, and M. H. Beale. 1996. Neural Network Design. Boston: PWS Publishing.
  • Han, S., Y.-H. Qiao, J. Yan, Y.-Q. Liu, L. Li, and Z. Wang. 2019. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. Applied Energy 239:181–91. doi:10.1016/j.apenergy.2019.01.193.
  • Hoang, A. T., V. V. Pham, and X. P. Nguyen. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305:127161. doi:10.1016/j.jclepro.2021.127161.
  • Huang, Y., S. Liu, and L. Yang. 2018. Wind speed forecasting method using EEMD and the combination forecasting method based on GPR and LSTM. Sustainability 10 (10):3693. doi:10.3390/su10103693.
  • Ilhan, A., S. Tumse, M. O. Tasci, M. Bilgili, and B. Sahin. 2022. Particle image velocimetry investigation of the flow for the curved type wind turbine shroud. Journal of Applied Fluid Mechanics 15 (2):373–85. doi:10.47176/jafm.15.02.33004.
  • Jang, J.-S. R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3):665–85. doi:10.1109/21.256541.
  • Kassa, Y., J. H. Zhang, D. H. Zheng, and D. Wei. (2016). Short term wind power prediction using ANFIS. 2016 IEEE International Conference on Power and Renewable Energy (ICPRE) , Shanghai, China. (pp. 383-393). doi:10.1109/icpre.2016.7871238.
  • Kavasseri, R. G., and K. Seetharaman. 2009. Day-ahead wind speed forecasting using F-Arima models. Renewable Energy 34 (5):1388–93. doi:10.1016/j.renene.2008.09.006.
  • Khosravi, A., R. N. N. Koury, L. Machado, and J. J. G. Pabon. 2018. Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production 176:63–75. doi:10.1016/j.jclepro.2017.12.065.
  • Li, L., M. Wang, F. Zhu, and C. Wang (2009) Wind power forecasting based on time series and neural network. Proceedings of the Second Symposium Intemational Computer Science, Huangshan, P. R. China. (pp. 293–97).
  • Liang, S., L. Nguyen, and F. Jin (2018). A multi-variable stacked long-short term memory network for wind speed forecasting. 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA. (pp. 4561-4564). doi:10.1109/bigdata.2018.8622332.
  • Liu, H., C. Chen, H.-Q. Tian, and Y.-F. Li. 2012. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renewable Energy 48:545–56. doi:10.1016/j.renene.2012.06.012.
  • Liu, H., H.-Q. Tian, and Y.-F. Li. 2015. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. Journal of Wind Engineering and Industrial Aerodynamics 141:27–38. doi:10.1016/j.jweia.2015.02.004.
  • López, E., C. Valle, H. Allende, E. Gil, and H. Madsen. 2018. Wind power forecasting based on Echo state networks and long short-term memory. Energies 11 (3):526. doi:10.3390/en11030526.
  • Marndi, A., G. K. Patra, and K. C. Gouda. 2020. Short-term forecasting of wind speed using time division ensemble of hierarchical deep neural networks. Bulletin of Atmospheric Science and Technology 1 (1):91–108. doi:10.1007/s42865-020-00009-2.
  • Mirrashid, M., and H. Naderpour. 2021b. Innovative Computational Intelligence-based model for vulnerability assessment of RC frames subject to seismic sequence. Journal of Structural Engineering 147 (3):04020350. doi:10.1061/(asce)st.1943-541x.0002921.
  • Mohandes, M., S. Rehman, and S. M. Rahman. 2011. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Applied Energy 88 (11):4024–32. doi:10.1016/j.apenergy.2011.04.015.
  • Moschopoulos, M., G. N. Rossopoulos, and C. I. Papadopoulos. 2021. Journal bearing performance prediction using machine learning and octave-band signal analysis of Sound and vibration measurements. Polish Maritime Research 28 (3):137–49. doi:10.2478/pomr-2021-0041.
  • Moustris, K. P., D. Zafirakis, K. A. Kavvadias, and J. K. Kaldellis (2016). Wind power forecasting using historical data and artificial neural networks modeling. Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), Belgrade. (pp. 1–6).doi:10.1049/cp.2016.1094.
  • Naderpour, H., and M. Mirrashid. 2020. Proposed soft computing models for moment capacity prediction of reinforced concrete columns. Soft Computing 24 (15):11715–29. doi:10.1007/s00500-019-04634-8.
  • Naderpour, H., M. Mirrashid, and P. Parsa. 2021. Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures 248:113263. doi:10.1016/j.engstruct.2021.113263.
  • Pai, S., and S. A. Soman (2017). Forecasting global horizontal solar irradiance: A case study based on Indian geography. 2017 7th International Conference on Power Systems (ICPS), India. (pp. 247–252). doi:10.1109/icpes.2017.8387301.
  • Peiris, A. T., J. Jayasinghe, and U. Rathnayake. 2021. Forecasting wind power generation using artificial neural network: “Pawan Danawi”—a case study from Sri Lanka. Journal of Electrical and Computer Engineering 2021, 1–10. doi:10.1155/2021/5577547.
  • Pinson, P., H. A. Nielsen, H. Madsen, and G. Kariniotakis. 2009. Skill forecasting from ensemble predictions of Wind Power. Applied Energy 86 (7–8):1326–34. doi:10.1016/j.apenergy.2008.10.009.
  • Sahin, B., M. Bilgili, and H. Akilli. 2005. The wind power potential of the Eastern Mediterranean region of Turkey. Journal of Wind Engineering and Industrial Aerodynamics 93 (2):171–83. doi:10.1016/j.jweia.2004.11.005.
  • Shao, H., and X. Deng. 2016. Short-term wind power forecasting using model structure selection and data fusion techniques. International Journal of Electrical Power & Energy Systems 83:79–86. doi:10.1016/j.ijepes.2016.03.059.
  • Shi, X., X. Lei, Q. Huang, S. Huang, K. Ren, and Y. Hu. 2018. Hourly Day-ahead wind power prediction using the hybrid model of variational model decomposition and long short-term memory. Energies 11 (11):3227. doi:10.3390/en11113227.
  • Singh, S., T. S. Bhatti, and D. P. Kothari. 2007. Wind power estimation using artificial neural network. Journal of Energy Engineering 133 (1):46–52. doi:10.1061/(asce)0733-9402(2007)133:1(46).
  • Tuan Hoang, A., S. Nižetić, H. Chyuan Ong, W. Tarelko, V. Viet Pham, T. Hieu Le, M. Quang Chau, and X. Phuong Nguyen. 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments 47:101416. doi:10.1016/j.seta.2021.101416.
  • Tumse, S., M. Bilgili, and B. Şahin. 2022. Estimation of aerodynamic coefficients of a non-slender delta wing under ground effect using artificial intelligence techniques. Neural Computing and Applications. doi:10.1007/s00521-022-07013-x.
  • Ucar, A., and F. Balo. 2009. Investigation of wind characteristics and assessment of wind-generation potentiality in Uludağ-Bursa, Turkey. Applied Energy 86 (3):333–39. doi:10.1016/j.apenergy.2008.05.001.
  • Wang, J., and Y. Li. 2018. Multi-step ahead wind speed prediction based on optimal feature extraction, Long short term memory neural network and error correction strategy. Applied Energy 230:429–43. doi:10.1016/j.apenergy.2018.08.114.
  • Wang, J., W. Zhang, Y. Li, J. Wang, and Z. Dang. 2014. Forecasting wind speed using empirical mode decomposition and Elman Neural Network. Applied Soft Computing 23:452–59. doi:10.1016/j.asoc.2014.06.027.
  • Wu, W., K. Chen, Y. Qiao, and Z. Lu (2016). Probabilistic short-term wind power forecasting based on Deep Neural Networks. 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China. (pp. 1–8). doi:10.1109/pmaps.2016.7764155.
  • Xiaoyun, Q., K. Xiaoning, Z. Chao, J. Shuai, and M. Xiuda. (2016). Short-term prediction of wind power based on deep long short-term memory. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi'an.(pp. 1148–1152). doi: 10.1109/appeec.2016.7779672.
  • Xydis, G., C. Koroneos, and M. Loizidou. 2009. Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in southern Greece. Applied Energy 86 (11):2411–20. doi:10.1016/j.apenergy.2009.03.017.
  • Zagan, R., I. Paprocka, M.-G. Manea, and E. Manea. 2021. Estimation of ship repair time using the genetic algorithm. Polish Maritime Research 28 (3):88–99. doi:10.2478/pomr-2021-0036.
  • Zaytar, M. A., and C. E. Amrani. 2016. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. International Journal of Computer Applications 143 (11):7–11. doi:10.5120/ijca2016910497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.