205
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Parametric study of solid oxide fuel cell based novel power and desalination system

&
Pages 3785-3802 | Received 24 Jan 2022, Accepted 07 Apr 2022, Published online: 06 May 2022

References

  • Ahmad, M., and M. Karimi. 2016. Thermodynamic analysis of kalina cycle. International Journal of Science and Research (IJSR) 5:2244–49.
  • Akkaya, A. V., and B. Sahin. 2009. A study on performance of solid oxide fuel cell‐organic Rankine cycle combined system. International Journal of Energy Research 33 (6):553–64. doi:10.1002/er.1490.
  • Ameri, M., and R. Mohammadi. 2013. Simulation of an atmospheric SOFC and gas turbine hybrid system using aspen plus software. International Journal of Energy Research 37 (5):412–25. doi:10.1002/er.1941.
  • Amin, H., and M. Mehdi Rashidi. 2016. Thermodynamic analysis of different working fluids used in organic Rankine cycle for recovering waste heat from GT-MHR. Journal of Engineering Science and Technology, 11(1).
  • Anand, B., and T. Srinivas. 2017. Performance Evaluation of Photovoltaic/Thermal-HDH Desalination System. Applied Solar Energy, 53. doi:10.3103/S0003701X17030045.
  • Arora, Gaitry and Singh, Onkar. 2019. Thermo-economic analysis of air powered solarized Intercooled-reheat GT cycle combined with steam rankine cycle and organic Rankine cycle for power and cooling Journal of Material Science and Mechanical Engineering (JMSME) 6 2 p-. 2393–9095.
  • Arora, G., and O. Singh January 2019. Thermodynamic study of environment friendly air/steam combined cycle. Journal of Energy and Environmental Sustainability 7:52–58. doi: 10.47469/JEES.2019.v07.100078.
  • Chatrattanawet, N., D. Saebea, S. Authayanun, A. Arpornwichanop, and Y. Patcharavorachot. 2017. Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches. Energy 146. doi:10.1016/j.energy.2017.06.125.
  • Chen, D., C. Zhang, H. Rong, C. Wei, and S. Gou. 2020. Experimental study on seawater desalination through supercooled water dynamic ice making. Desalination 476:114233. doi:10.1016/j.desal.2019.114233.
  • Chitgar, N., M. A. Emadi, A. Chitsaz, and M. A. Rosen. 2019. Investigation of a novel multigeneration system driven by a SOFC for electricity and fresh water production. Energy Conversion and Management 196:296–310. doi:10.1016/j.enconman.2019.06.006.
  • Cotruvo, J. A. 2005. Desalination guidelines development for drinking water: Background. Nutrients in Drinking Water 13.
  • Gandiglio, M., A. Lanzini, P. Leone, M. Santarelli, and R. Borchiellini. 2013. Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance. Energy 55:142–55. doi:10.1016/j.energy.2013.03.059.
  • Gogoi, T., P. Sarmah, and D. D. Nath. 2014. Energy and exergy based performance analyses of a solid oxide fuel cell integrated combined cycle power plant. Energy Conversion and Management 86:507–19. doi:10.1016/j.enconman.2014.06.006.
  • Grasham, O., V. Dupont, M. A. Camargo-Valero, P. García-Gutiérrez, and T. Cockerill. 2019. Combined ammonia recovery and solid oxide fuel cell use at wastewater treatment plants for energy and greenhouse gas emission improvements. Applied Energy 240:698–708. doi:10.1016/j.apenergy.2019.02.029.
  • Hafsia, A., Z. Bariza, H. Djamel, B. M. Hocine, G. M. Andreadis, and A. Soumia. 2011. SOFC fuel cell heat production: Analysis. Energy Procedia 6:643–50. doi:10.1016/j.egypro.2011.05.074.
  • Haseli, Y., I. Dincer, and G. Naterer. 2008. Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. International Journal of Hydrogen Energy 33 (20):5811–22. doi:10.1016/j.ijhydene.2008.05.036.
  • Hosseini, M., I. Dincer, and M. A. Rosen. 2013. Hybrid solar–fuel cell combined heat and power systems for residential applications: Energy and exergy analyses. Journal of Power Sources 221:372–80. doi:10.1016/j.jpowsour.2012.08.047.
  • Janardhanan, V. M., V. Heuveline, and O. Deutschmann. 2007. Performance analysis of a SOFC under direct internal reforming conditions. Journal of Power Sources 172 (1):296–307. doi:10.1016/j.jpowsour.2007.07.008.
  • Khanmohammadi, S., K. Atashkari, and R. Kouhikamali. 2015. Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier, Appl. Applied Thermal Engineering 91:114622–859. doi:10.1016/j.applthermaleng.2015.08.080.
  • Kumar, S., and O. Singh. 2014. Enhancement of combined cycle performance using transpiration cooling of gas turbine blades with steam. Journal of Mechanical Science and Technology 28 (6):2429–37. doi:10.1007/s12206-014-0536-1.
  • Kumar, P., and O. Singh. 2019. Thermodynamic analysis of solid oxide fuel cell-gas turbine-organic rankine cycle combined system. Journal of Material Science and Mechanical Engineering (JMSME), April-June, 6(2): 98–102.
  • Kumar, P., and O. Singh. 2021. Exergo-economic study of SOFC-intercooled and reheat type GT-VARS-ORC combined power and cooling system. Journal of the Institution of Engineers (India): Series C 102 (5):1153–66. doi:10.1007/s40032-021-00731-6.
  • Liu, Y., J. Han, and H. You. 2019. Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization. International Journal of Hydrogen Energy 44 (56):29700–10. doi:10.1016/j.ijhydene.2019.02.201.
  • Massardo, A., and F. Lubelli. 2000. Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): Part A—Cell model and cycle thermodynamic analysis. Journal of Engineering for Gas Turbines and Power 122 (1):27–35. doi:10.1115/1.483187.
  • Meng, Qingshan, Jitian Han, Lingjian Kong, Liu Hai, Zhang Tao, Yu Zeting, et al. 2017. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle. International Journal of Hydrogen Energy. 42(7):4673–78. doi:10.1016/j.ijhydene.2016.09.067.
  • Meng, F., E. Wang, B. Zhang, F. Zhang, and C. Zhao. 2019. Thermo-economic analysis of transcritical CO2 power cycle and comparison with Kalina cycle and ORC for a low-temperature heat source. Energy Conversion and Management 195:1295–308. doi:10.1016/j.enconman.2019.05.091.
  • Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67:597–611. doi:10.1016/j.rser.2016.09.044.
  • Nourpour, M., and M. H. K. Manesh. 2022. Evaluation of novel integrated combined cycle based on gas turbine-SOFC-geothermal-steam and organic Rankine cycles for gas turbo compressor station. Energy Conversion and Management 252 (115050):0196–8904. doi:10.1016/j.enconman.2021.115050.
  • Ogriseck, S. 2009. Integration of Kalina cycle in a combined heat and power plant, a case study, Appl. Applied Thermal Engineering 29 (14–15):2843–48. doi:10.1016/j.applthermaleng.2009.02.006.
  • Peng, W., H. Chen, J. Liu, X. Zhao, and X. Gang. 2021. Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle. Energy Conversion and Management 245 (114622):0196–8904. doi:10.1016/j.enconman.2021.114622.
  • Pierobon, L., and M. Rokni. 2015. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant with a Kalina cycle. International Journal of Green Energy 12 (6):610–19. doi:10.1080/15435075.2013.867267.
  • Prakash, D., and O. Singh. 2019. Thermo-economic study of combined cycle power plant with carbon capture and methanation. Journal of Cleaner Production 231:529–42. doi:10.1016/j.jclepro.2019.05.217.
  • Ramadhani, F., M. A. Hussain, H. Mokhlis, M. Fazly, and J. M. Ali. 2019. Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles. Applied Energy 238:1373–88. doi:10.1016/j.apenergy.2019.01.150.
  • Reza Abbasi, H., H. Pourrahmani, N. Chitgar, and H. Jan Van. 2021. “Thermodynamic analysis of a tri-generation system using SOFC and HDH desalination unit.” International Journal of Hydrogen Energy, 360–3199. doi:10.1016/j.ijhydene.2021.04.152.
  • Sachdeva, J., and O. Singh. 2021. Comparative evaluation of solarized triple combined cycle for different ORC fluids. Renewable Energy 163:1333–42. doi:10.1016/j.renene.2020.09.063.
  • Sanjay, O. S., B. Prasad, and B. N. Prasad. 2008. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle, Appl. Applied Thermal Engineering 28 (17–18):2315–26. doi:10.1016/j.applthermaleng.2008.01.022.
  • Sghaier, S., K. Tahar, and A. Brahim. 2017. Energetic and exergetic parametric study of a SOFC-GT hybrid power plant. International Journal of Hydrogen Energy 43. doi:10.1016/j.ijhydene.2017.08.216.
  • Singh, O., and G. Arora. 2021. Vinod Kumar Sharma energy-exergy analysis of solarized triple combined cycle having intercooling, reheating and waste heat utilization. TECNICA ITALIANA-Italian Journal of Engineering Science 65 (1):93–104. doi:10.18280/ti-ijes.650114.
  • Singh, R., and O. Singh. 2018. Comparative study of combined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle. Energy Conversion and Management 171:659–70. doi:10.1016/j.enconman.2018.06.009.
  • Singh, O., and R. Singh. 2021. Thermodynamic evaluation of SOFC-GT hybrid power and cooling system, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 43 (16):1975–89. doi:10.1080/15567036.2019.1663307.
  • van Galen, E., and G. J. van den Brink. 1986. Energy storage in phase change materials for solar applications. International Journal of Ambient Energy 7 (1):31–46. doi:10.1080/01430750.1986.9675474.
  • Wang, J., Z. Yan, S. Ma, and Y. Dai. 2012a. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell. International Journal of Hydrogen Energy 37 (3):2535–45.
  • Yan, Z., P. Zhao, J. Wang, and Y. Dai. 2013. Thermodynamic analysis of an SOFC–GT–ORC integrated power system with liquefied natural gas as heat sink. International Journal of Hydrogen Energy 38 (8):3352–63. doi:10.1016/j.ijhydene.2012.12.101.
  • Zhang, X., S. H. Chan, L. Guojun, H. Hiang, L. Jun, and Z. Feng. 2010. A review of integration strategies for solid oxide fuel cells. Journal of Power Sources 195:685–702. doi:10.1016/j.jpowsour.2009.07.045.
  • Zhao, H., and Q. Hou. 2019. Thermodynamic performance study of the MR SOFC-HAT-CCHP system. International Journal of Hydrogen Energy 44 (8):4332–49. doi:10.1016/j.ijhydene.2018.12.129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.