356
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Solid oxide fuel cells fueled by carbonaceous fuels: A thermodynamics-based approach for safe operation and experimental validation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3509-3531 | Received 08 Dec 2021, Accepted 31 Mar 2022, Published online: 01 May 2022

References

  • Ahmed, K., and F. Karl. 2010. Fuel processing for high-temperature high-efficiency fuel cells. Industrial & Engineering Chemistry Research 49 (16):7239–56. doi:10.1021/ie100778g.
  • Alzate-Restrepo, V., and J. M. Hill. 2010. Carbon deposition on Ni/Ysz anodes exposed To Co/H2 feeds. Journal of Power Sources 195 (5):1344–51. doi:10.1016/j.jpowsour.2009.09.014.
  • Ballantine, A. “Everything you need to know about solid oxide fuel cells.” Website of Bloom Energy. Accessed March 21, 2019. www.bloomenergy.com/blog/everything you need know about solid oxide fuel cells.
  • Barbieri, G. 2015. Water Gas Shift (WGS). In Encyclopedia of membranes, ed. E. Drioli and L. Giorno, 1–4. Berlin, Heidelberg: Springer.
  • Bian, L. Z., Z. Y. Chen, L. J. Wang, F. S. Li, and K. C. Chou. 2017. Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H2CO fuels. International Journal of Hydrogen Energy 42 (20):14246–52. doi:10.1016/j.ijhydene.2016.08.214.
  • Buccheri, M. A., A. Singh, and J. M. Hill. 2011. Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane. Journal of Power Sources 196 (3):968–76. doi:10.1016/j.jpowsour.2010.08.073.
  • Cairns, E. J., A. D. Tevebaugh, and G. J. Holm. 1963. Thermodynamics of hydrocarbon fuel cells. Journal of the Electrochemical Society 110 (10):1025. doi:10.1149/1.2425577.
  • Cimenti, M., and J. Hill. 2009. Direct utilization of liquid fuels in SOFC for portable applications: Challenges for the selection of alternative anodes. Energies 2 (2):377–410. doi:10.3390/en20200377.
  • Dou, B., H. Zhang, Y. Song, L. Zhao, B. Jiang, H. Mingxing, C. Ruan, H. Chen, and X. Yujie. 2019. Hydrogen production from the thermochemical conversion of biomass: Issues and challenges. Sustainable Energy & Fuels 3 (2):314–42. doi:10.1039/C8SE00535D.
  • Gao, Z., L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett. 2016. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science 9 (5):1602–44. doi:10.1039/C5EE03858H.
  • Hanif, M. B., M. Motola, S. qayyum, S. Rauf, A. khalid, C-J Li, C-X Li. 2022. Recent Advancements, Doping Strategies and the Future Perspective of Perovskite-Based Solid Oxide Fuel Cells for Energy Conversion. Chemical Engineering Journal 428 (January):132603.
  • Hanif, M. B., S. Rauf, M. Motola, Z. Ud Din Babar, C.-J. Li, and L. Cheng-Xin. February 2022b. Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Materials Research Bulletin 146:111612.
  • Hanna, J., W. Y. Lee, Y. Shi, and A. F. Ghoniem. 2014. Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Progress in Energy and Combustion Science 40 (February):74–111. doi:10.1016/j.pecs.2013.10.001.
  • Jeong, H., M. Hauser, F. Fischer, M. Hauck, S. Lobe, R. Peters, C. Lenser, N. H. Menzler, and O. Guillon. 2019. “Utilization of Bio-Syngas in Solid Oxide Fuel Cell Stacks: Effect of Hydrocarbon Reforming.” Journal of The Electrochemical Society 166 (2): F137–43.
  • Jiang, Y., and A. V. Virkar. 2003. Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society 150 (7):A942. doi:10.1149/1.1579480.
  • Johnson, D. U., R. E. Mitchell, and T. M. Gür. 2018. Insights into sulfur uptake by solid sorbents from fossil fuels and biomass: Revisiting C–H–O ternary diagrams. Energy & Fuels 32 (12):12066–80. doi:10.1021/acs.energyfuels.8b02154.
  • Kee, R. J., A. Huayang Zhu, M. Sukeshini, and G. S. Jackson. 2008. Solid oxide fuel cells: operating principles, current challenges, and the role of syngas. Combustion Science and Technology 180 (6):1207–44. doi:10.1080/00102200801963458.
  • Kee, R. J., H. Zhu, and D. G. Goodwin. 2005. “Solid-oxide fuel cells with hydrocarbon fuels.” Proceedings of the Combustion Institute 30 ( 2): 2379–404.
  • Kim, T., G. Liu, M. Boaro, S.-I. Lee, J. M. Vohs, R. J. Gorte, O. H. Al-Madhi, and B. O. Dabbousi. 2006. A study of carbon formation and prevention in hydrocarbon-fueled SOFC. Journal of Power Sources 155 (2):231–38. doi:10.1016/j.jpowsour.2005.05.001.
  • Klein, J.-M., Y. Bultel, S. Georges, and M. Pons. 2007. Modeling of a SOFC fuelled by methane: from direct internal reforming to gradual internal reforming. Chemical Engineering Science 62 (6):1636–49. doi:10.1016/j.ces.2006.11.034.
  • Knoef, H. A. M. 2012 Handbook Biomass Gasification 2nd edition. Enschede, The Netherlands: BTG Biomass Technology Group.
  • Koh, J.-H., B.-S. Kang, H. C. Lim, and Y.-S. Yoo. 2001. Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes. Electrochemical and Solid-State Letters 4 (2):A12. doi:10.1149/1.1339237.
  • Lee, W. Y., J. Hanna, and A. F. Ghoniem. 2013. On the predictions of carbon deposition on the nickel anode of a SOFC and its impact on open-circuit conditions. Journal of the Electrochemical Society 160 (2):F94–105. doi:10.1149/2.051302jes.
  • Maza, W. A., D. A. Steinhurst, M. D. McIntyre, R. A. Walker, and J. C. Owrutsky. 2021. Operando optical studies of solid oxide fuel cells operating on CO and simulated syngas fuels. Journal of Power Sources 492 (April):229598. doi:10.1016/j.jpowsour.2021.229598.
  • Miao, H., W. G. Wang, T. S. Li, T. Chen, S. S. Sun, and X. Cheng. 2010. Effects of coal syngas major compositions on Ni/YSZ Anode-Supported solid oxide fuel cells. Journal of Power Sources 195 (8):2230–35. doi:10.1016/j.jpowsour.2009.10.092.
  • Midilli, A., M. Ay, I. Dincer, and M. A. Rosen. 2005. On hydrogen and hydrogen energy strategies. Renewable and Sustainable Energy Reviews 9 (3):255–71. doi:10.1016/j.rser.2004.05.003.
  • Patel, N., S. Bishop, R. Utter, D. Das, and M. Pecht. 2018. Failure modes, mechanisms, effects, and criticality analysis of ceramic anodes of solid oxide fuel cells. Electronics 7 (11):323. doi:10.3390/electronics7110323.
  • Patel, H. C., A. N. Tabish, F. Comelli, and P. V. Aravind. 2015. Oxidation of H2, CO and syngas mixtures on ceria and nickel pattern anodes. Applied Energy 154:912–20. doi:10.1016/j.apenergy.2015.05.049.
  • Hofmann, Ph., K. D. Panopoulos, P. V. Aravind, M. Siedlecki, A. Schweiger, J. Karl, J. P. Ouweltjes, and E. Kakaras. 2009. Operation of solid oxide fuel cell on biomass product gas with Tar Levels >10 g Nm−3. International Journal of Hydrogen Energy 34 (22):9203–12. doi:10.1016/j.ijhydene.2009.07.040.
  • Pivovar, B., N. Rustagi, and S. Satyapal. 2018. Hydrogen at scale (H 2 @Scale): Key to a clean, economic, and sustainable energy system. The Electrochemical Society Interface 27 (1):47–52. doi:10.1149/2.F04181if.
  • Rakesh, N., and S. Dasappa. 2018a. “Biosyngas for Electricity Generation Using Fuel Cells - A Gas Quality Assessment.”. In Proceedings of the 26th European Biomass Conference and Exhibition, 14-17 May 2018: doi:10.5071/26thEUBCE2018-2CV.2.17 708- 712. Copenhagen, Denmark: ETA-Florence Renewable Energies.
  • Rakesh, N., and S. Dasappa. 2018. A critical assessment of tar generated during biomass gasification - formation, evaluation, issues and mitigation strategies. Renewable and Sustainable Energy Reviews 91 (August):1045–64. doi:10.1016/j.rser.2018.04.017.
  • Rakesh, N., and S. Dasappa. 2018b. Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system. Energy Conversion and Management 167 (July):134–46. doi:10.1016/j.enconman.2018.04.092.
  • Rakesh, N., and S. Dasappa. 2021. “Carbon deposition on the anode of a solid oxide fuel cell fueled by syngas—a thermodynamic analysis.” In Proceedings of the 7th International Conference on Advances in Energy Research, edited by M. Bose and A. Modi, 1083–90. Springer Proceedings in Energy. Singapore: Springer
  • Sanford, G., and B. J. McBride. 1994. “computer program for calculatio n of complex chemical equilibrium compositions and applications, i. analysis.”
  • Sanford, G., and B. J. McBride. 1996. “Computer program for calculation of complex chemical equilibrium compositions and applications ii. users manual and program description.”
  • Sasaki, K., and Y. Teraoka. 2003a. “Equilibria in Fuel Cell Gases : I. Equilibrium Compositions and Reforming Conditions” Journal of The Electrochemical Society 150 (7): A878. https://doi.org/10.1149/1.1577337
  • Sasaki, K., and Y. Teraoka. 2003b. “Equilibria in Fuel Cell Gases : II. The C-H-O Ternary Diagrams.” Journal of The Electrochemical Society 150 (7): A885. https://doi.org/10.1149/1.1577338
  • Shah, M. A. K., S. R. Yousaf, N. Mushtaq, B. Zhu, Z. Tayyab, M. Yousaf, M. B. Hanif, P. D. Lund, L. Yuzheng, and M. I. Asghar. 2021. Novel perovskite semiconductor based on Co/Fe-Codoped LBZY (La 0.5 Ba 0.5 Co 0.2 Fe 0.2 Zr 0.3 Y 0.3 O 3−δ) as an electrolyte in ceramic fuel cells. ACS Applied Energy Materials 4 (6):5798–808. doi:10.1021/acsaem.1c00599.
  • Sharma, M., N. Rakesh, and S. Dasappa. 2016. Solid oxide fuel cell operating with biomass derived producer gas: status and challenges. Renewable and Sustainable Energy Reviews 60 (July):450–63. doi:10.1016/j.rser.2016.01.075.
  • Revankar, S. T., and P. Majumdar. 2014. Fuel Cells: Principles, Design, and Analysis. Mechanical Engineering Series. Boca Raton: CRC Press,Taylor & Francis Group .
  • Singh, A., A. Gupta, N. Rakesh, A. M. Shivapuji, and S. Dasappa. 2022. Syngas generation for methanol synthesis: oxy-steam gasification route using agro-residue as fuel. Biomass Conversion and Biorefinery February. doi:10.1007/s13399-021-02128-y.
  • Stoeckl, B., V. Subotić, M. Preininger, H. Schroettner, and C. Hochenauer. 2018. SOFC operation with carbon oxides: experimental analysis of performance and degradation. Electrochimica Acta 275 (June):256–64. doi:10.1016/j.electacta.2018.04.036.
  • Sukeshini, A. M., B. Habibzadeh, B. P. Becker, C. A. Stoltz, B. W. Eichhorn, and G. S. Jackson. 2006. Electrochemical Oxidation of H2, CO, and CO∕H2 Mixtures on Patterned Ni Anodes on YSZ Electrolytes. Journal of the Electrochemical Society 153 (4):A705. doi:10.1149/1.2170577.
  • Website of fuelcellmaterials.com. Accessed April 19, 2022. www.fuelcellmaterials.com
  • Yang, H., M. B. Hanif, S.-L. Zhang, L. Chang-Jiu, and L. Cheng-Xin. 2021. Sintering behavior and electrochemical performance of a-site deficient SrxTi0.3Fe0·7O3-δ oxygen electrodes for solid oxide electrochemical cells. Ceramics International 47 (17):25051–58. doi:10.1016/j.ceramint.2021.05.235.
  • Zhu, H., R. J. Kee, V. M. Janardhanan, O. Deutschmann, and D. G. Goodwin. 2005. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of the Electrochemical Society 152 (12):A2427. doi:10.1149/1.2116607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.