200
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparative thermal performance enhancement study of a reverse - irradiated and direct - irradiated direct absorption solar collector using silver nanofluid

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3823-3835 | Received 03 Dec 2021, Accepted 05 Apr 2022, Published online: 03 May 2022

References

  • American Society of Heating, Refrigerating and Air conditioning Engineers. ASHRAE standard methods of testing to determine the thermal performance of solar collectors. Report, 1986
  • Balaji, K., A. I. Khan, P. G. Kumar, S. Iniyan, and R. Goic. 2019. Experimental analysis on free convection effect using two different thermal performance enhancers in absorber tube of a forced circulation flat plate solar water heater. Solar Energy 185:445–54. doi:10.1016/j.solener.2019.04.089.
  • Bandarra Filho, E. P., O. S. H. Mendoza, C. L. L. Beicker, A. Menezes, and D. Wen. 2014. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management 84:261–67. doi:10.1016/j.enconman.2014.04.009.
  • Bhalla, V., and H. Tyagi. 2017. Solar energy harvesting by cobalt oxide nanoparticles, a nanofluid absorption based system. Sustainable Energy Technology Assessments 24:45–54. doi:10.1016/j.seta.2017.01.011.
  • Bohren, C. F., and D. R. Huffman. 1998. Absorption and scattering of light by small particles. In John Wiley & Sons, New York.
  • Cengel, Y. A. C. Heat transfer: A practical approach with EES CD 896 (2002).
  • Chen, M., Y. He, J. Zhu, Y. Shuai, B. Jiang, and Y. Huang. 2015. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy 115:85–94. doi:10.1016/j.solener.2015.01.031.
  • Chen, M., Y. He, J. Zhu, and D. Wen. 2016. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Applied Energy 181:65–74. doi:10.1016/j.apenergy.2016.08.054.
  • Delfani, S., M. Karami, and M. A. A. Behabadi. 2016. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nano fl uid. Renewable Energy 87:754–64. doi:10.1016/j.renene.2015.11.004.
  • Duan, H. 2020. Analysis on the extinction properties of nanofluids for direct solar absorption. Physical E Low-Dimensional System Nanostructuring 120:114046. doi:10.1016/j.physe.2020.114046.
  • Duan, H., L. Tang, Y. Zheng, and C. Xu. 2018. Effect of plasmonic nanoshell-based nanofluid on efficiency of direct solar thermal collector. Applied Thermal Engineering 133 188–193:2018. doi:10.1016/j.applthermaleng.2018.01.042.
  • Fudholi, A., K. Sopian, M. H. Ruslan, M. A. Alghoul, and M. Y. Sulaiman. 2010. Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews 14 (1):1–30. doi:10.1016/j.rser.2009.07.032.
  • Globe, S., and D. Dropkin. 1959. Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. Journal of Heat Transfer 81 (1):24–28. doi:10.1115/1.4008124.
  • Gorji, T. B., and A. A. Ranjbar. 2015. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Solar Energy 122:314–25. doi:10.1016/j.solener.2015.09.007.
  • Gorji, T. B., and A. A. Ranjbar. 2016. A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Solar Energy 135:493–505. doi:10.1016/j.solener.2016.06.023.
  • Hazra, S. K., S. Ghosh, and T. K. Nandi. 2019. Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors. Applied Thermal Engineering 163:114402. doi:10.1016/j.applthermaleng.2019.114402.
  • Jeon, J., S. Park, and B. Jae. 2016. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy 132:247–56. doi:10.1016/j.solener.2016.03.022.
  • Kannan, N., and D. Vakeesan. 2016. Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews 62:1092–105. doi:10.1016/j.rser.2016.05.022.
  • Kimpton, H., E. Stulz, and X. Zhang. 2020. Silver nanofluids based broadband solar absorber through tuning nanosilver geometries. Solar Energy 208:515–26. doi:10.1016/j.solener.2020.08.018.
  • Kumar, S., N. Chander, V. K. Gupta, and R. Kukreja. 2021. Progress, challenges and future prospects of plasmonic nanofluid based direct absorption solar collectors – A state-of-the-art review. Solar Energy 227:365–425. doi:10.1016/j.solener.2021.09.008.
  • Kumar, S., V. Sharma, M. R. Samantaray, and N. Chander. 2020. Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions. Renewable Energy 162:1958–69. doi:10.1016/j.renene.2020.10.017.
  • Lee, R., J. B. Kim, C. Qin, H. Lee, B. J. Lee, and G. Y. Jung. 2020. Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients. Solar Energy Materials and Solar Cells 209:110442. doi:10.1016/j.solmat.2020.110442.
  • Mallah, A. R., S. N. Kazi, M. N. M. Zubir, and A. Badarudin. 2018. Blended morphologies of plasmonic nanofluids for direct absorption applications. Applied Energy 229:505–21. doi:10.1016/j.apenergy.2018.07.113.
  • Mallah, A. R., M. N. Mohd Zubir, O. A. Alawi, K. M. Salim Newaz, and A. B. Mohamad Badry. 2019. Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications. Solar Energy Materials and Solar Cells 201:110084. doi:10.1016/j.solmat.2019.110084.
  • Mallah, A. R., M. N. M. Zubir, O. A. Alawi, S. N. Kazi, W. Ahmed, R. Sadri, and A. Kasaeian. 2022. Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency. Renewable Energy 187:1204–23. doi:10.1016/j.renene.2022.01.051.
  • Mehrali, M., M. K. Ghatkesar, and R. Pecnik. 2018. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy 224:103–15. doi:10.1016/j.apenergy.2018.04.065.
  • Otanicar, T. P., P. E. Phelan, and J. S. Golden. 2009. Optical properties of liquids for direct absorption solar thermal energy systems. Solar Energy 83 (7):969–77. doi:10.1016/j.solener.2008.12.009.
  • Tyagi, H., P. Phelan, and R. Prasher. 2007. Predicted efficiency of a nanofluid-based direct absorption solar receiver. Proceedings of Energy Sustainability and Conference 729–736:2007. doi:10.1115/ES2007-36139.
  • Walshe, J., G. Amarandei, H. Ahmed, S. McCormack, and J. Doran. 2019. Development of poly-vinyl alcohol stabilized silver nanofluids for solar thermal applications. Solar Energy Materials and Solar Cells 201:110085. doi:10.1016/j.solmat.2019.110085.
  • Wang, K., Y. He, A. Kan, W. Yu, D. Wang, L. Zhang, G. Zhu, H. Xie, and X. She. 2019. Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors. Applied Energy 254:113706. doi:10.1016/j.apenergy.2019.113706.
  • Wang, K., Y. He, P. Liu, A. Kan, Z. Zheng, L. Wang, H. Xie, and W. Yu. 2020. Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications. Renewable Energy 159:652–62. doi:10.1016/j.renene.2020.05.167.
  • Zeiny, A., H. Jin, L. Bai, G. Lin, and D. Wen. 2018. A comparative study of direct absorption nanofluids for solar thermal applications. Solar Energy 161:74–82. doi:10.1016/j.solener.2017.12.037.
  • Zhou, J., Y. Gu, Z. Deng, L. Miao, H. Su, P. Wang, and J. Shi. 2019. The dispersion of Au nanorods decorated on graphene oxide nanosheets for solar steam generation. Sustainable Material and Technologies 19. doi:10.1016/j.susmat.2018.e00090.
  • Zhu, G., L. Wang, N. Bing, H. Xie, and W. Yu. 2019. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons. Energy 183:747–55. doi:10.1016/j.energy.2019.06.170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.