151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation study on the flow behaviors of weak electrolyte solutions in nano-sized and micron-sized pores considering electric double layer interactions

ORCID Icon, , ORCID Icon &
Pages 3532-3543 | Received 05 Nov 2021, Accepted 12 Apr 2022, Published online: 27 Apr 2022

References

  • Ban, H., B. Lin, and Z. Song. 2010. Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow [J]. Biomicrofluidics 4 (1):014104. doi:10.1063/1.3328091.
  • Chen, Q. L., K. J. Wu, and C. H. He. 2015. Investigation on liquid flow characteristics in microtubes [J]. American Institute of Chemical Engineers 61 (2):718–35. doi:10.1002/aic.14656.
  • Choi, Y. S., and S. J. Kim. 2009. Electrokinetic flow-induced currents in silica nanofluidic channels [J]. Journal of Colloid and Interface Science 333 (2):672–78. doi:10.1016/j.jcis.2009.01.061.
  • Das, S., A. Guha, and S. K. Mitra. 2013. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers [J]. Analytica Chimica Acta 804:159–66. doi:10.1016/j.aca.2013.09.061.
  • Ding, Z., Y. Jian, L. Wang, and L. Yang. 2017. Analytical investigation of electrokinetic effects of micropolar fluids in nanofluidic channels [J]. Physics of Fluids 29 (8):082008. doi:10.1063/1.4999487.
  • Glover, P. W. J. 2018. Modelling pH-dependent and microstructure-dependent streaming potential coefficient and zeta potential of porous sandstones [J]. Transport in Porous Media 124 (1):31–56. doi:10.1007/s11242-018-1036-z.
  • Guo, Y., L. Zhang, H. Sun, Y. Yang, Z. Xu, B. Bao, and J. Yao. 2021. The simulation of liquid flow in the pore network model of nanoporous media [J]. Journal of Energy Resources Technology 143 (3):033006. doi:10.1115/1.4049176.
  • Hunter, R. J. 1981. Zeta potential in colloid science: Principles and applications colloid science [M]. London: Academic Press.
  • Israelachvili, J. N. 2011. Intermolecular and surface forces [M]. San Diego: Academic Press.
  • Kumar, D., and S. K. Biswas. 2010. Contribution of different physical forces to the disjoining pressure of a thin water film being pressed by an oil droplet [J]. Journal of Colloid and Interface Science 348 (1):255–64. doi:10.1016/j.jcis.2010.04.009.
  • Li, C., Z. Liu, X. Liu, Z. Feng, and X. Mo. 2021b. Combined effect of surface charge and boundary slip on pressure-driven flow and convective heat transfer in nanochannels with overlapping electric double layer [J]. International Journal of Heat and Mass Transfer 176:121353. doi:10.1016/j.ijheatmasstransfer.2021.121353.
  • Li, B., W. Zhu, Y. Liu, Q. Ma, L. Zhang, and M. Yue. 2021a. Experimental study and production model of multiscale stress sensitivity in tight oil reservoirs [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–12. doi:10.1080/15567036.2021.1909187.
  • Movahed, S., and D. Li. 2011. Electrokinetic transport through nanochannels [J]. Electrophoresis 32 (11):1259–67. doi:10.1002/elps.201000564.
  • Park, H. M., J. S. Lee, and T. W. Kim. 2007. Comparison of the Nernst–Planck model and the Poisson–Boltzmann model for electroosmotic flows in microchannels [J]. Journal of Colloid and Interface Science 315 (2):731–39. doi:10.1016/j.jcis.2007.07.007.
  • Raoof, A., and S. M. Hassanizadeh. 2012. A new formulation for pore-network modeling of two-phase flow [J]. Water Resources Research 48 (1). doi: 10.1029/2010WR010180.
  • Revil, A. 2017. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations [J]. Advances in Water Resources 103:119–38. doi:10.1016/j.advwatres.2016.02.006.
  • Riad, A., B. Khorshidi, and M. Sadrzadeh. 2020. Analysis of streaming potential flow and electroviscous effect in a shear-driven charged slit microchannel [J]. Scientific Reports 10 (1):1–14. doi:10.1038/s41598-020-75531-6.
  • Sen, T., and M. Barisik. 2020. Slip effects on ionic current of viscoelectric electroviscous flows through different length nanofluidic channels [J]. Langmuir 36 (31):9191–203. doi:10.1021/acs.langmuir.0c01457.
  • Tsou, T. Y., and J. P. Hsu. 2020. Pressure-driven ion separation through a pH-regulated cylindrical nanopore [J]. Journal of Membrane Science 604:118073. doi:10.1016/j.memsci.2020.118073.
  • Valvatne, P. H., and M. J. Blunt. 2004. Predictive pore-scale modeling of two-phase flow in mixed wet media [J]. Water Resources Research 40 (7). doi: 10.1029/2003WR002627.
  • Yao, J., W. Zhang, Y. Bu, and H. Sun. 2015. Single-phase flow model in micro/nanoscale capillaries considering streaming potential [J]. Acta Petrolei Sinica 36 (1):81–88. doi:10.7623/syxb201501010.
  • Yen, W. K., and J. P. Hsu. 2021. Electrokinetic behavior of a pH-regulated dielectric cylindrical nanopore [J]. Journal of Colloid and Interface Science 588:94–100. doi:10.1016/j.jcis.2020.12.050.
  • Zhang, X., Y. Shi, S. Kuang, W. Zhu, Q. Cai, Y. Wang, X. Wu, and T. Jin. 2019. Microscale effects of Bingham-plastic liquid behavior considering electroviscous effects in nano-or microsized circular tubes [J]. Physics of Fluids 31 (2):022001. doi:10.1063/1.5068774.
  • Zhang, W., J. Yao, and H. Sun. 2015. Electrokinetic coupling in single phase flow in periodically changed capillary with a very small throat size [J]. International Journal of Heat and Mass Transfer 84:722–28. doi:10.1016/j.ijheatmasstransfer.2015.01.062.
  • Zhu, W., B. Li, Y. Liu, H. Song, and X. Wang. 2017. Solid-liquid interfacial effects on residual oil distribution utilizing three-dimensional micro network models [J]. Energies 10 (12):2059. doi:10.3390/en10122059.
  • Zhu, W., Y. Liu, B. Li, Q. Deng, L. Yang, and Y. Wang. 2020. Dynamical network modeling of residual oil distribution with particle surface tension after nano/microsized polymer particles solution flooding [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2020.1826599.
  • Zou, C., R. Zhu, W. U. Songtao, X. YANG, and L. Wang. 2012. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance [J]. Acta Petrolei Sinica 33 (2):173–87. doi:10.7623/syxb201202001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.