93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nitrogenous gas formation mechanisms of chemically modified superfine pulverized coal during pyrolysis

, &
Pages 3544-3554 | Received 16 Dec 2021, Accepted 12 Apr 2022, Published online: 28 Apr 2022

References

  • Beck, N. V., S. E. Meech, P. R. Norman, and L. A. Pears. 2002. Characterisation of surface oxides on carbon and their influence on dynamic adsorption. Carbon 40 (4):531–40. doi:10.1016/S0008-6223(01)00144-0.
  • Chen, J., Q. Chen, and Q. Ma. 2012. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J. Colloid. Interface. Sci 370 (1):32–38. doi:10.1016/j.jcis.2011.12.073.
  • Chen, S. J., L. F. Tang, X. X. Tao, L. Chen, Z. Yang, and L. L. Li. 2017. Effect of oxidation processing on the surface properties and floatability of Meizhiyou long-flame coal. Fuel 210:177–86. doi:10.1016/j.fuel.2017.08.053.
  • Chen, T., S. Rodrigues, S. D. Golding, and V. Rudolph. 2018. Improving coal bioavailability for biogenic methane production via hydrogen peroxide oxidation. Int. J. Coal Geol 195:402–14. doi:10.1016/j.coal.2018.06.011.
  • Cheng, Z., M. Li, J. Li, F. Lin, W. Ma, B. Yan, and G. Chen. 2021. Transformation of nitrogen, sulfur and chlorine during waste tire pyrolysis. J. Anal. Appl. Pyrol 153:104987. doi:10.1016/j.jaap.2020.104987.
  • Cui, X., X. Li, Y. Li, and S. Li. 2017. Evolution mechanism of oxygen functional groups during pyrolysis of Datong coal. Journal of Thermal Analysis and Calorimetry 129 (2):1169–80. doi:10.1007/s10973-017-6224-5.
  • Dagaut, P., F. Lecomte, S. Chevailler, and M. Cathonnet. 2000. The oxidation of HCN and reactions with nitric oxide: Experimental and detailed kinetic modeling. Combustion Science and Technology 155 (1):394–404. doi:10.1080/00102200008947286.
  • F, M., M. R, and A. F. N. 2014. A review on microwave assisted pyrolysis of coal and biomass for fuel production, Renew. Sustain. Energy. Rev 39:555–74. doi:10.1016/j.rser.2014.07.073.
  • Fang, R. M., H. B. Huang, W. J. Huang, J. Ji, Q. Y. Feng, Y. J. Shu, Y. J. Zhan, G. Y. Liu, and R. J. Xie. 2017. Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene. Appl. Surf. Sci 420:905–10. doi:10.1016/j.apsusc.2017.05.228.
  • Glarborg, P., A. Jensen, and J. E. Johnsson. 2003. Fuel nitrogen conversion in solid fuel fired systems, Prog. Energy Combust. Sci 29:89–113. doi:10.1016/S0360-1285(02)00031-X.
  • Hill, S. C., and L. D. Smoot. 2000. Modeling of nitrogen oxides formation and destruction in combustion systems, Prog. Progress in Energy and Combustion Science 26 (4–6):417–58. doi:10.1016/S0360-1285(00)00011-3.
  • Huang, Z., M. A. Urynowicz, and P. J. S. Colberg. 2013a. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1. Int. J. Coal Geol 115:97–105. doi:10.1016/j.coal.2013.01.012.
  • Huang, Z., M. A. Urynowicz, and P. J. S. Colberg. 2013b. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate. Fuel 111:813–19. doi:10.1016/j.fuel.2013.03.079.
  • Kawashima, H., K. Koyano, and T. Takanohashi. 2013. Changes in nitrogen functionality due to solvent extraction of coal during hypercoal production, Fuel Process. Technol 106:275–80.
  • Kelemen, S. R., H. Freund, M. L. Gorbaty, and P. J. Kwiatek. 1999. Thermal chemistry of nitrogen in kerogen and low-rank coal, Energ. Fuel 13 (2):529–38. doi:10.1021/ef9802126.
  • L, Q., B. B, P. Z, Z. S, C. H, S. M, X. L, and M. X. 2021. Research on the relationship between the structure and pyrolysis characteristics of pretreated Shendong coal. Fuel 305:121515.
  • Li, J., Z. Li, Y. Yang, and C. Wang. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Ling, L., R. Zhang, B. Wang, and K. Xie. 2009. Pyrolysis mechanisms of quinoline and isoquinoline with density functional theory, Chin. J. Chem. Eng 17:805–13.
  • Liu, F., H. Guo, Q. Wang, R. Haider, M. A. Urynowicz, P. H. Fallgren, S. Jin, M. Tang, B. Chen, and Z. Huang. 2019. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesi. Fuel 237:1209–16. doi:10.1016/j.fuel.2018.10.043.
  • Liu, F. J., X. Y. Wei, Y. Zhu, Y. G. Wang, P. Li, X. Fan, Y. P. Zhao, Z. M. Zong, W. Zhao, and Y. B. Wei. 2013. Oxidation of Shengli lignite with aqueous sodium hypochlorite promoted by pretreatment with aqueous hydrogen peroxid. Fuel 111:211–15. doi:10.1016/j.fuel.2013.04.041.
  • Mae, K., S. Inoue, and K. Miura. 1996. Flash pyrolysis of coal modified through liquid phase oxidation and solvent swelling. Energy & Fuels 10 (2):116322–70. doi:10.1021/ef950108d.
  • Mae, K., T. Maki, J. Araki, and K. Miura. 1997. Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature, Energ. Fuel 11 (4):825–31. doi:10.1021/ef960225o.
  • Mudedla, S. K., C. V. S. Kumar, A. Suresh, P. Baskar, P. S. Dash, and V. Subramanian. 2018. Water catalyzed pyrolysis of oxygen functional groups of coal: A density functional theory investigation. Fuel 233:328–35. doi:10.1016/j.fuel.2018.06.057.
  • Mullins, O. C., S. Mitra-Kirtley, J. Van Elp, and S. P. Cramer. 1993. Molecular structure of nitrogen in coal from XANES spectroscopy, Appl. Spectrosc 47 (8):1268–75. doi:10.1366/0003702934067991.
  • Nelson, P. F., A. N. Buckley, and M. D. Kelly. 1992. Functional forms of nitrogen in coals and the release of coal nitrogen as NOX precursors (HCN and NH3. Symp. (Int.) Combust 24 (1):1259–67. doi:10.1016/S0082-0784(06)80148-7.
  • Palmer, S. R., E. J. Hippo, and X. A. Dorai. 1994. Chemical coal cleaning using selective oxidation. Fuel 73:161–69. doi:10.1016/0016-2361(94)90109-0.
  • Palmer, S. R., E. J. Hippo, and X. A. Dorai. 1995. Selective oxidation pretreatments for the enhanced desulfurization of coal. Fuel 74 (2):193–200. doi:10.1016/0016-2361(95)92654-O.
  • Phiri, Z., R. C. Everson, H. W. J. P. Neomagus, and B. J. Wood. 2017. The effect of acid demineralising bituminous coals and de-ashing the respective chars on nitrogen functional forms. journal of analytical and applied pyrolysis 125:262–68. doi:10.1016/j.jaap.2017.04.009.
  • Rezaeifard, A., M. Jafarpour, M. A. Naseri, and R. Shariati. 2008. A rapid and easy method for the synthesis of azoxy arenes using tetrabutylammonium peroxymonosulfate. Dyes and Pigments 76 (3):840–43. doi:10.1016/j.dyepig.2007.02.008.
  • Svoboda, K., and M. Pohořelý. 2004. Influence of operating conditions and coal properties on NOX and N2O emissions in pressurized fluidized bed combustion of subbituminous coals. Fuel 83 (7–8):1095–103. doi:10.1016/j.fuel.2003.11.006.
  • Wang, S. Q., Y. G. Tang, H. H. Schobert, Y. N. Guo, and Y. F. Su. 2011. FTIR and 13C NMR Investigation of Coal Component of Late Permian Coals from Southern China. Energ. Fuel 25 (12):5672–77. doi:10.1021/ef201196v.
  • Wu, L. N., Z. Y. Tian, J. J. Weng, D. Yu, Y. X. Liu, D. X. Tian, C. C. Cao, J. B. Zou, Y. Zhang, and J. Z. Yang. 2019. Experimental and kinetic study on the low-temperature oxidation of pyridine as a representative of fuel-N compounds. Combust. Flame 202:394–404.
  • Yang, F., Y. Hou, W. Wu, M. Niu, S. Ren, and Q. Wang. 2017. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids. Fuel 189:408–18. doi:10.1016/j.fuel.2016.10.112.
  • Yao, C., Y. Zhang, M. Du, X. Du, and S. Huang. 2019. Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline. Chem. Eng. J 362:262–68. doi:10.1016/j.cej.2019.01.040.
  • Yao, Q., X. Kong, X. Dai, J. Gao, R. Wang, Y. Zhang, M. Sun, and X. Ma. 2020. 1H NMR and 13C NMR characterization of n-heptane extraction of low-temperature coal tar reacted with formaldehyde. Energy Sources, Part A 42 (12):1490–98. doi:10.1080/15567036.2019.1604863.
  • Z, N., L. G, Y. H, and Z. C. 2018. Devolatilization behaviour and pyrolysis kinetics of coking coal based on the evolution of functional groups. J. Anal. Appl. Pyrol 134:351–61. doi:10.1016/j.jaap.2018.06.025.
  • Zhang, Y., X. Kang, J. Tan, and R. L. Frost. 2014a. Structural characterization of hydrogen peroxide-oxidized anthracites by X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectra. Appl. Spectrosc 68:749–57. doi:10.1366/13-07323.
  • Zhang, Y., J. Tan, X. Kang, H. Yu, and R. L. Frost. 2014b. Structure evolution characterization of Anyang anthracites via H2O2 oxidization and HF acidification. Spectrochim. Acta Part A 130:574–80. doi:10.1016/j.saa.2014.04.046.
  • Zhou, Q., Y. Zhang, J. Zhang, and D. Ding. 2018. Evolution behaviors of nitrogen functionalities during fast CO2-rich pyrolysis of coal. Fuel 229:135–43. doi:10.1016/j.fuel.2018.05.013.
  • Zhou, Y., L. Li, L. Jin, J. Zhu, J. Li, Y. Li, H. Fan, and H. H. 2020. Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry. Fuel 260:116322. doi:10.1016/j.fuel.2019.116322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.