137
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Improved activity and SO2 tolerance of rare-earth elements modified CeTi catalyst for Hg0 and NO simultaneous removal from flue gas

, , , , , , , , & ORCID Icon show all
Pages 3575-3583 | Received 01 Feb 2022, Accepted 12 Apr 2022, Published online: 28 Apr 2022

References

  • Chi, G., B. Shen, R. Yu, C. He, and X. Zhang. 2017. Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts. Journal of Hazardous Materials 330:83–92. doi:10.1016/j.jhazmat.2017.02.013.
  • Geng, L., L. Han, W. Cen, J. Wang, L. Chang, D. Kong, and G. Feng. 2014. A first-principles study of Hg adsorption on Pd(111) and Pd/γ-Al2O3(110) surfaces. Applied Surface Science 321:30–37. doi:10.1016/j.apsusc.2014.09.164.
  • He, Z., Y. T. Xie, Y. Wang, J. J. Xu, and J. J. Hu. 2020. Removal of mercury from coal-fired flue gas and its sulfur tolerance characteristics by Mn, Ce modified γ-Al2O3 Catalyst. Journal of Chemistry 2020: 1–10. doi:10.1155/2020/8702745.
  • Li, H., S. Wu, L. Li, J. Wang, W. Ma, and K. Shih. 2015. CuO–CeO 2 /TiO 2 catalyst for simultaneous NO reduction and Hg 0 oxidation at low temperatures. Catalysis Science & Technology 5 (12):5129–38. doi:10.1039/C5CY00794A.
  • Li, P., Y. Xin, Q. Li, Z. P. Wang, Z. L. Zhang, and L. R. Zheng. 2012. Ce-Ti Ce–Ti Amorphous Oxides for Selective Catalytic Reduction of NO with NH3NH 3: Confirmation of Ce-O-Ti Ce–O–Ti Active Sites. Environmental Science & Technology 46 (17):9600–05. doi:10.1021/es301661r.
  • Li, H. H., J. D. Zhang, Y. X. Cao, F. Li, C. Y. Liu, Y. W. Song, J. J. Hu, and Y. Wang. 2020. Enhanced activity and SO 2 resistance of Co-modified CeO 2 -TiO 2 catalyst prepared by facile co-precipitation for elemental mercury removal in flue gas. Applied Organometallic Chemistry 34 (4):e5463. doi:10.1002/aoc.5463.
  • Liu, H., Z. X. Fan, C. Z. Sun, S. H. Yu, S. Feng, W. Chen, D. Z. Chen, C. J. Tang, F. Gao, and L. Dong. 2019. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl Catal B-Environ 244:671–83. doi:10.1016/j.apcatb.2018.12.001.
  • Liu, H., J. Yang, C. Tian, Y. Zhao, and J. Zhang. 2017. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents. Applied Clay Science 147 (36–43). doi:10.1016/j.clay.2017.05.006.
  • Liu, Y. X., J. F. Zhou, Y. C. Zhang, J. F. Pan, Q. Wang, and J. Zhang. 2015. Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor. Fuel 145:180–88. doi:10.1016/j.fuel.2014.12.084.
  • Mosrati, J., H. Atia, R. Eckelt, H. Lund, G. Agostini, U. Bentrup, N. Rockstroh, S. Keller, U. Armbruster, and M. Mhamdi. 2018. Nb-modified Ce/Ti oxide catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Catalysts 8 (5):175. doi:10.3390/catal8050175.
  • Parks, J. E. 2010. Chemistry. Less costly catalysts for controlling engine emissions. Science 2nd. 327 (5973):1584–85. doi:10.1126/science.1187154.
  • Qiu, L., Y. Zhai, H. Chen, X. Liu, L. Zhu, C. Li, and G. Zeng. 2018. Removal of elemental mercury from simulated flue gas by a novel composite sulfurized activated carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (4):381–87. doi:10.1080/15567036.2013.821548.
  • Shen, B., H. Ma, and Y. Yao. 2012. Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature. Journal of Environmental Sciences 24 (3):499–506. doi:10.1016/S1001-0742(11)60756-0.
  • Wang, Y., Q. Huo, L. Shi, G. Feng, J. Wang, L. Han, and L. Chang. 2020b. Adsorption of mercury species on selected CuS surfaces and the effects of HCl. Chemical Engineering Journal 393:124773. doi:10.1016/j.cej.2020.124773.
  • Wang, Y., B. Shen, C. He, S. Yue, and F. Wang. 2015. Simultaneous Removal of NO and Hg 0 from Flue Gas over Mn-Ce/Ti-PILCsMn–Ce/Ti-PILCs. Environ Sci Technol 49 (15):9355–63. doi:10.1021/acs.est.5b01435.
  • Wang, B., M. Wang, L. Han, Y. Hou, W. Bao, C. Zhang, G. Feng, L. Chang, Z. Huang, and J. Wang. 2020a. Improved Activity and SO 2 Resistance by Sm-Modulated Redox of MnCeSmTiOx MnCeSmTiO x Mesoporous Amorphous Oxides for Low-Temperature NH 3 -SCR of NO. ACS Catalysis 10 (16):9034–45. doi:10.1021/acscatal.0c02567.
  • Xu, Y., G. Luo, Q. Pang, S. He, F. Deng, Y. Xu, and H. Yao. 2019. Adsorption and catalytic oxidation of elemental mercury over regenerable magnetic FeCe mixed oxides modified by non-thermal plasma treatment. Chemical Engineering Journal 358:1454–63. doi:10.1016/j.cej.2018.10.145.
  • Yang, P., C. Lu, N. P. Hua, and Y. K. Du. 2002. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Materials Letters 57 (4):794–801. doi:10.1016/S0167-577X(02)00875-3.
  • Zhang, J., C. Li, L. Zhao, T. Wang, S. Li, and G. Zeng. 2017b. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg0 from simulated flue gas. Chemical Engineering Journal 313:1535–47. doi:10.1016/j.cej.2016.11.039.
  • Zhang, Z., J. Wu, B. Li, H. Xu, and D. Liu. 2019. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides. Chemical Engineering Journal 375:121946. doi:10.1016/j.cej.2019.121946.
  • Zhao, L. K., C. T. Li, J. Zhang, X. A. Zhang, F. M. Zhan, J. F. Ma, Y. E. Xie, and G. M. Zeng. 2015. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas. Fuel 153:361–69. doi:10.1016/j.fuel.2015.03.001.
  • Zhao, B., H. H. Yi, X. L. Tang, Q. Li, D. D. Liu, and F. Y. Gao. 2016. Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal 286:585–93. doi:10.1016/j.cej.2015.10.107.
  • Zhao, B. T., Z. X. Zhang, J. Jin, and W. P. Pan. 2009. Simulation of mercury capture by sorbent injection using a simplified model. Journal of Hazardous Materials 170 (2–3):1179–85. doi:10.1016/j.jhazmat.2009.05.095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.