157
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on methane inert gas dilution effect on marine gas diesel engine performance and emissions

ORCID Icon &
Pages 3584-3596 | Received 29 Nov 2021, Accepted 11 Apr 2022, Published online: 27 Apr 2022

References

  • Ahmad, Z., O. Kaario, S. Karimkashi, C. Qiang, V. Vuorinen, and M. Larmi. 2021. Effects of ethane addition on diesel-methane dual-fuel combustion in a heavy-duty engine. Fuel 289:119834. doi:10.1016/j.fuel.2020.119834.
  • Armin, M., M. Gholinia, M. Pourfallah, and A. A. Ranjbar. 2021. Investigation of the fuel injection angle/time on combustion, energy, and emissions of a heavy-duty dual-fuel diesel engine with reactivity control compression ignition mode. Energy Reports 7:5239–47. doi:10.1016/J.EGYR.2021.08.115.
  • Ganesan, N., T. H. Le, P. Ekambaram, D. Balasubramanian, V. V. Le, and A. T. Hoang. 2022. Experimental assessment on performance and combustion behaviors of reactivity-controlled compression ignition engine operated by n-pentanol and cottonseed biodiesel. Journal of Cleaner Production 330:129781. doi:10.1016/j.jclepro.2021.129781.
  • He, Y., M. Liang, C. Liu, S. Liao, R. Yang, L. Qin, X. Jian, and Y. Shao. 2021. Kinetic incentive of hydrogen addition on nonpremixed laminar methane/air flames. International Journal of Hydrogen Energy 1–11. doi:10.1016/j.ijhydene.2021.01.230.
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill, Inc.
  • Hossain, A. K., P. Refahtalab, A. Omran, D. I. Smith, and P. A. Davies. 2020. An experimental study on performance and emission characteristics of an IDI diesel engine operating with neat oil-diesel blend emulsion. Renewable Energy 146:1041–50. doi:10.1016/j.renene.2019.06.162.
  • Imhof, D., D. Tsuru, H. Tajima, and K. Takasaki. 2013. High-pressure natural gas injection (GI) marine engine research with a rapid compression expansion machine. In Dr.-Ing. Silke Sadowski ed. CIMAC congress 2013Shanghai: DVV Media Group GmbH. (pp.11).
  • Jamrozik, A., K. Grab-Rogaliński, and W. Tutak. 2020. Hydrogen effects on combustion stability, performance and emission of diesel engine. International Journal of Hydrogen Energy 45 (38):19936–47. doi:10.1016/j.ijhydene.2020.05.049.
  • Kakaee, A. H., A. Paykani, and M. Ghajar. 2014. The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines. Renewable and Sustainable Energy Reviews 38:64–78. doi:10.1016/j.rser.2014.05.080.
  • Lion, S., I. Vlaskos, and R. Taccani. 2020. A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management 207:112553. doi:10.1016/J.ENCONMAN.2020.112553.
  • Liu, L., X. Chen, D. Liu, J. Du, and W. Li. 2022. Combustion phase identification for closed-loop combustion control by resonance excitation in marine diesel engines. Mechanical Systems and Signal Processing 163:108115. doi:10.1016/J.YMSSP.2021.108115.
  • Liu, J., and C. E. Dumitrescu. 2019. Numerical investigation of methane number and wobbe index effects in lean-burn natural gas spark-ignition combustion. Energy and Fuels 33 (5):4564–74. doi:10.1021/acs.energyfuels.8b04463.
  • Mikulski, M., and S. Wierzbicki. 2016. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine. Journal of Natural Gas Science and Engineering 31:525–37. doi:10.1016/j.jngse.2016.03.074.
  • Mukhtar, M. N. A., F. Y. Hagos, M. M. Noor, R. Mamat, A. A. Abdullah, and A. R. Abd Aziz. 2019. Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review. Renewable and Sustainable Energy Reviews 111:490–506. doi:10.1016/j.rser.2019.05.035.
  • Murugesan, P., A. T. Hoang, E. Perumal Venkatesan, D. Santosh Kumar, D. Balasubramanian, A. T. Le, and V. V. Pham. 2021. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2021.08.107.
  • Nayak, S. K., A. T. Hoang, S. Nižetić, X. P. Nguyen, and T. H. Le. 2022. Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode. Fuel 310:1–16. doi:10.1016/j.fuel.2021.122232.
  • Nemati, A., J. C. Ong, K. M. Pang, S. Mayer, and J. H. Walther. 2022. A numerical study of the influence of pilot fuel injection timing on combustion and emission formation under two-stroke dual-fuel marine engine-like conditions. Fuel 312:122651. doi:10.1016/j.fuel.2021.122651.
  • Nguyen, H. P., A. T. Hoang, S. Nizetic, X. P. Nguyen, A. T. Le, C. N. Luong, V. D. Chu, and V. V. Pham. 2021. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems 31 (11):1–29. doi:10.1002/2050-7038.12580.
  • Stewart, J., A. Clarke, and R. Chen. 2007. An experimental study of the dual-fuel performance of a small compression ignition diesel engine operating with three gaseous fuels. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221:943–56. doi:10.1243/09544070JAUTO458.
  • Thiripuvanam, T., H. Tashima, and D. Tsuru, 2017. Air entrainment and combustion process of high-pressure gas jet in gas direct injection engines, in: COMODIA 2017 - 9th International Conference on Modeling and Diagnostics for Advanved Engine Systems, Okayama, Japan. doi:10.1299/jmsesdm.2017.9.c304.
  • Vinayagam, N. K., A. T. Hoang, J. M. Solomon, M. Subramaniam, D. Balasubramanian, A. I. EL-Seesy, and X. P. Nguyen. 2021. Smart control strategy for effective hydrocarbon and carbon monoxide emission reduction on a conventional diesel engine using the pooled impact of pre-and post-combustion techniques. Journal of Cleaner Production 306:127310. doi:10.1016/j.jclepro.2021.127310.
  • Wang, Z., F. Zhang, Y. Xia, D. Wang, Y. Xu, and G. Du. 2021. Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel 289:119869. doi:10.1016/J.FUEL.2020.119869.
  • Yousefi, A., H. Guo, S. Dev, B. Liko, and S. Lafrance. 2021. Effect of pre-main-post diesel injection strategy on greenhouse gas and nitrogen oxide emissions of natural gas/diesel dual-fuel engine at high load conditions. Fuel 302:121110. doi:10.1016/J.FUEL.2021.121110.
  • Yu, H., W. Wang, D. Sheng, H. Li, and S. Duan. 2022. Performance of combustion process on marine low speed two-stroke dual fuel engine at different fuel conditions: Full diesel/diesel ignited natural gas. Fuel 310:122370. doi:10.1016/j.fuel.2021.122370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.