160
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermogravimetric analysis of the torrefied Austrian pine

ORCID Icon &
Pages 3641-3659 | Received 04 Oct 2021, Accepted 11 Apr 2022, Published online: 26 Apr 2022

References

  • https://www.nrel.gov/docs/gen/fy13/42618.pdf (Accessed 21st April 2020)
  • Bai, X., Kim, K.H., Brown, R.C., Dalluga, E., Hutchinson, C., Lee, Y.J., Dalluge, D., et al. 2014. Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 128:170–79. doi:10.1016/j.fuel.2014.03.013.
  • Bartlett, A. I., R. M. Hadden, and L. A. Bisby. 2019. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technology 55 (1):1–49. doi:10.1007/s10694-018-0787-y.
  • Barzegar, R., A. Yozgatligil, H. Olgun, and A. T. Atimtay. 2020. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute 93 (3):889–98. doi:10.1016/j.joei.2019.08.001.
  • Beliy, V. A., and E. V. Udoratina. 2014. Kinetic study of wood pyrolysis in presence of metal halides. Central European Journal of Chemistry 12 (12):1294–303. doi:10.2478/s11532-014-0577-4.
  • Burnham, A. K. 2017. Global chemical kinetics of fossil fuels: How to model maturation and pyrolysis, global chemical kinetics of fossil fuels: How to model maturation and pyrolysis, Denmark: Springer Cham. doi:10.1007/978-3-319-49634-4.
  • Caton-Kerr, S. E., A. Tohidi, and M. J. Gollner. 2019. Firebrand generation from thermally-Degraded Cylindrical Wooden Dowels. Frontiers in Mechanical Engineering 5. doi:10.3389/fmech.2019.00032.
  • Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., Ma, Z., et al. 2018. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Conversion and Management 169:228–37. doi:10.1016/j.enconman.2018.05.063.
  • Commandré, J. M., and A. Leboeuf. 2015. Volatile yields and solid grindability after torrefaction of various biomass types. Environmental Progress and Sustainable Energy 34 (4):1180–86. doi:10.1002/ep.12073.
  • Criado, J. M., J. Málek, and A. Ortega. 1989. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochimica Acta 147 (2):377–85. doi:10.1016/0040-6031(89)85192-5.
  • Demirbaş, A., and G. Arin. 2002. An overview of biomass pyrolysis. Energy Sources 24 (5):471–82. doi:10.1080/00908310252889979.
  • Dhaundiyal, A., T. M. Abdulrahman, and T. Laszlo. 2018. “Thermo-kinetics of forest waste using model-free methods.” Universitas Scientiarum tofw, 465–95. doi:10.11144/Javeriana.SC23-3.
  • Dhaundiyal, A., D. Atsu, and L. Toth. 2020d. Physico-chemical assessment of torrefied eurasian pinecones. Biotechnology for Biofuels 13 (1). doi: 10.1186/s13068-020-01840-7.
  • Dhaundiyal, A., G. Bercesi, and I. Bacskai. 2021. The effect of torrefaction on the thermo-kinetics of thermally processed black pine. Canadian Journal of Chemical Engineering 99 (10):2241–56. doi:10.1002/cjce.23933.
  • Dhaundiyal, A., and S. B. Singh. 2020a. The generalisation of a multi-reaction model for polynomial ramping of temperature. J Therm Anal Calorim. doi:10.1007/s10973-020-09650-7.
  • Dhaundiyal, A., and S. Singh. 2020b. Optimisation of the performance of a pyrolysis reactor for G50 chips. Archives of Thermodynamics 41 (1):245–63. doi:10.24425/ather.2020.132957.
  • Dhaundiyal, A., Toth, L., Bacskai, I., Atsu, D., et al. 2020c. Analysis of pyrolysis reactor for hardwood (Acacia) chips. Renewable Energy 147:1979–89. doi:10.1016/j.renene.2019.09.095.
  • Fraga, L. G., J. Silva, S. Teixeira, D. Soares, M. Ferreira, and J. Teixeira. 2020. Thermal conversion of pine wood and kinetic analysis under oxidative and non-oxidative environments at low heating rate. Proceedings 58 (1):23. doi:10.3390/wef-06921.
  • Granados, D. A., P. Basu, D. R. Nhuchhen, and F. Chejne. 2019. Investigation into torrefaction kinetics of biomass and combustion behaviours of raw, torrefied and char samples. Biofuels 12 (6):633–43. doi:10.1080/17597269.2018.1558837.
  • Gucho, E. M., K. Shahzad, E. A. Bramer, N. A. Akhtar, and G. Brem. 2015. Experimental study on dry torrefaction of beech wood and miscanthus. Energies 8 (5):3903–23. doi:10.3390/en8053903.
  • Hoang, A. T., S. Nižetić, H. C. Ong, M. Mofijur, S. F. Ahmed, B. Ashok, V. T. V. Bui, and M. Q. Chau. 2021. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 281. doi:10.1016/j.chemosphere.2021.130878.
  • Jiang, Y., K. H. Park, and C. H. Jeon. 2020. Feasibility study of co-firing of torrefied empty fruit bunch and coal through boiler simulation. Energies 13 (12):3051. doi:10.3390/en13123051.
  • Jiang, S., M. Tan, Z. Huang, J. Hu, C. Li, T. Lei, X. Zhang, Z. Wu, J. Huang, X. Qin, et al. 2021. Combining oxidative torrefaction and pyrolysis of phragmites australis: improvement of the adsorption capacity of biochar for tetracycline. Frontiers in Energy Research 9. doi:10.3389/fenrg.2021.673758.
  • Kaur, G., S. Kainth, R. Kumar, P. Sharma, and O. P. Pandey. 2021. Reaction kinetics during non-isothermal solid-state synthesis of boron trioxide via boric acid dehydration. Reaction Kinetics, Mechanisms and Catalysis 134 (1):347–59. doi:10.1007/s11144-021-02084-8.
  • Leroy, A., X. Falourd, L. Foucat, V. Méchin, F. Guillon, and G. Paës. 2021. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. Biotechnology for Biofuels 14 (1). doi: 10.1186/s13068-021-02015-8.
  • Lourenço, A., S. Araújo, J. Gominho, and D. Evtuguin. 2020. Cellulose structural changes during mild torrefaction of Eucalyptus wood. Polymers 12 (12):1–17. doi:10.3390/polym12122831.
  • Martínez, M. G., E. Hélias, G. Ratel, S. Thiéry, and T. Melkior. 2021. Torrefaction of woody and agricultural biomass: Influence of the presence of water vapor in the gaseous atmosphere. Processes 9 (1):1–15. doi:10.3390/pr9010030.
  • Nunes, L. J. R. 2020. Torrefied biomass as an alternative in coal-fueled power plants: a case study on grindability of agroforestry waste forms. Clean Technologies 2 (3):270–89. doi:10.3390/cleantechnol2030018.
  • Ondro, T., I. Vitázek, T. Húlan, M. K. Lawson, and Š. Csáki. 2018. Non-isothermal kinetic analysis of the thermal decomposition of spruce wood in air atmosphere. Research in Agricultural Engineering 64 (1):41–46. doi:10.17221/115/2016-RAE.
  • Rosendahl, L. 2013. Biomass combustion science, technology and engineering. Biomass Combustion Science, Technology and Engineering. doi:10.1533/9780857097439.
  • Sánchez-Jiménez, P. E., Maqueda, L.A.P., Perejon, A., Criado, J.M., et al. 2013. Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis. Thermochimica Acta 552:54–59. doi:10.1016/j.tca.2012.11.003.
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. 2008. NREL/TP-510-42622 analytical procedure - Determination of Ash in Biomass. Laboratory Analytical Procedure (LAP) April 17.
  • Sluiter, A., Hames, B., Ruiz, R., Templeton, D., Crocker, D., et al. 2012. NREL/TP-510-42618 analytical procedure - Determination of structural carbohydrates and lignin in Biomass. Laboratory Analytical Procedure (LAP)April 17.
  • Soltes, E. J., and T. J. Elder. 1981. Pyrolysis. In Organic Chemicals from Biomass, ed. I. S. Goldstein, 63–99. Boca Raton, FL: CRC Press.
  • Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.Bt, et al. 2011. Torrefaction of oil palm wastes. Fuel 90 (8):2585–91. doi:10.1016/j.fuel.2011.03.021.
  • Venkatesh, M., P. Ravi, and S. P. Tewari. 2013. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method. Journal of Physical Chemistry A 117 (40):10162–69. doi:10.1021/jp407526r.
  • Vyazovkin, S., Burnham, A.K., Criado, J.M., Maqueda, L.A.P, Popescu, C., Sbirrazzuoli, N., et al. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wagner, M. 2017. Introduction to Thermal Analysis. Thermal Analysis in Practice. doi:10.3139/9781569906446.001.
  • Xu, J., Huang, M., Hu, Z., Zhang, W., Li, Y., Yang, Y., et al. 2021. Prediction and modelling of the basic properties of biomass after torrefaction pretreatment. Journal of Analytical and Applied Pyrolysis 159. Available at:105287. doi:10.1016/j.jaap.2021.105287.
  • Zheng, C., D. Li, and M. Ek. 2019. Mechanism and kinetics of thermal degradation of insulating materials developed from cellulose fiber and fire retardants. Journal of Thermal Analysis and Calorimetry 135 (6):3015–27. doi:10.1007/s10973-018-7564-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.